The area of an 8 cm by 5 cm triangle is 20 cm^2.
The area of a triangle is calculated using the formula A = 1/2 * b * h, where b is the length of the base and h is the height. In this case, the base is 8 cm and the height is 5 cm, so the area of the triangle can be calculated as follows:
A = 1/2 * 8 * 5
A = 20 cm^2
Therefore, the area of an 8 cm by 5 cm triangle is 20 cm^2.
Learn more about area of a triangle here:
https://brainly.com/question/19305981
#SPJ4
express the limit as a definite integral on the given interval. lim n→[infinity] n exi 5 xi δx i = 1 [0, 9]
The limit as a definite integral on the given interval is lim n→∞ nΣi=1n exi* Δxi = ∫0⁹ ex dx = e⁹ - 1.
How to express the limit?To express the limit as a definite integral on the given interval, use the definition of a Riemann sum:
lim n→∞ Σi=1n f(xi*) Δxi = ∫aᵇ f(x) dx
where f(x) = ex, a = 0, b = 9, and Δx = (b - a)/n = 9/n. Also, xi* = point in the i-th subinterval [xi-1, xi], where xi = a + iΔx.
Substituting the values:
lim n→∞ Σi=1n exi* Δxi = ∫0⁹ ex dx
Integrating:
lim n→∞ Σi=1n exi* Δxi = [ex]0⁹ = e⁹ - 1
Therefore, the limit as a definite integral on the given interval is:
lim n→∞ nΣi=1n exi* Δxi = ∫0⁹ ex dx = e⁹ - 1
Find out more on definite integral here: https://brainly.com/question/31344244
#SPJ1
Research question: Are more than half of all ring-tailed lemurs left hand dominant? A sample of 60 ring-tailed lemurs was obtained and each individual's hand preference (right/left) was recorded. Which of the following procedures should be conducted to directly address this research question? O Paired means t test O One sample proportion z test O One sample mean t test
The procedure that should be conducted to directly address this research question is the one sample proportion z test. This is because the research question is about the proportion of ring-tailed lemurs that are left hand dominant, which is a categorical variable. The sample size is greater than 30, so the central limit theorem can be applied and the distribution of the sample proportion can be assumed to be approximately normal. Therefore, a one sample proportion z test can be used to test whether the proportion of left hand dominant ring-tailed lemurs is greater than 0.5.
The one sample proportion z test is a statistical test used to determine whether a sample proportion is significantly different from a hypothesized population proportion. This test requires a categorical variable and a sample size greater than 30 in order to apply the central limit theorem and assume normality of the distribution of the sample proportion. The test statistic is calculated by subtracting the hypothesized population proportion from the sample proportion and dividing by the standard error of the sample proportion.
To directly address the research question of whether more than half of all ring-tailed lemurs are left hand dominant, a one sample proportion z test should be conducted. This test is appropriate for a categorical variable with a sample size greater than 30 and assumes normality of the distribution of the sample proportion. The test will determine whether the proportion of left hand dominant ring-tailed lemurs is significantly different from 0.5, which is the null hypothesis.
To know more about statistical tests visit:
https://brainly.com/question/16244531
#SPJ11
decide whether the statement is true or false. 5 is in {1, 2, 3, 4, 5}
The statement given "5 is in {1, 2, 3, 4, 5}" is true because 5 is included in the set given {1, 2, 3, 4, 5}.
In set notation, the curly brackets {} represent a set. The set {1, 2, 3, 4, 5} contains the elements 1, 2, 3, 4, and 5. So, when we check if 5 is in this set, we find that it is indeed present. Therefore, the statement is true. Option A is the correct answer.
A set is an unordered collection of unique elements. In this case, the set {1, 2, 3, 4, 5} includes the numbers 1, 2, 3, 4, and 5. When we check if the number 5 is in this set, we find that it is one of the elements in the set. Thus, the statement "5 is in {1, 2, 3, 4, 5}" is true.
You can learn more about sets at
https://brainly.com/question/13458417
#SPJ11
suppose that f ( x ) = x 2 4 x − 7 . notice that f ( 9 ) = 42.5 . what does this tell us about the numerator
The fact that f(9) = 42.5 tells us that the numerator of the function, x^2, evaluated at x = 9 is equal to 42.5.
In the given function f(x) = x^2 / (4x - 7),
evaluating it at x = 9 yields f(9) = 9^2 / (4(9) - 7) = 81 / 29 ≈ 2.7931.
Since the numerator of the function is x^2, the fact that f(9) = 42.5 indicates that the numerator x^2 evaluated at x = 9 is equal to 42.5.
In this case, it means that 9^2 = 81 is equal to 42.5, which is not true. Therefore, there seems to be an error or inconsistency in the given information or calculation.
The numerator x^2 should evaluate to 81, not 42.5.
Learn more about numerator here: brainly.com/question/31083108
#SPJ11
Rewrite the product as a sum or difference. 16 sin(28x) sin(11x) Rewrite the product as a sum or difference. sin(-x) sin(9x)
The product as a sum or difference is:
1) 16 sin(28x) sin(11x) = 8[cos(17x) - cos(39x)]
2) sin(-x) sin(9x) = ([tex]\frac{1}{2}[/tex])[cos(-10x) - cos(8x)]
1) 16 sin(28x) sin(11x)
We can use the Product-to-Sum identity: sin(A)sin(B) = (1/2)[cos(A-B) - cos(A+B)]
So, 16 sin(28x) sin(11x) can be rewritten as:
8[cos(28x - 11x) - cos(28x + 11x)] = 8[cos(17x) - cos(39x)]
2) sin(-x) sin(9x)
Again, we use the Product-to-Sum identity: sin(A)sin(B) = ([tex]\frac{1}{2}[/tex])[cos(A-B) - cos(A+B)]
So, sin(-x) sin(9x) can be rewritten as:
([tex]\frac{1}{2}[/tex])[cos(-x - 9x) - cos(-x + 9x)] = ([tex]\frac{1}{2}[/tex])[cos(-10x) - cos(8x)]
Learn more about Product-to-Sum identity here:
https://brainly.com/question/29016343
#SPJ11
pls help lol my grade’s a 62 rn & grades are almost due !
The triangle in the image is a right triangle. We are given a side and an angle, and asked to find another side. Therefore, we should use a trigonometric function.
Trigonometric Functions: SOH-CAH-TOA
---sin = opposite/hypotenuse, cosine = adjacent/hypotenuse, tangent = opposite/adjacent
In this problem, looking from the angle, we are given the adjacent side and want to find the opposite side. This means we should use the tangent function.
tan(40) = x / 202
x = tan(40) * 202
x = 169.498
x (rounded) = 169 meters
Answer: the tower is 169 meters tall
Hope this helps!
let d={4,7,9}, e={4,6,7,8} and f={3,5,6,7,9}. list the elements in the set (d ∪ e) ∩ F
(d ∪ e) ∩ F = ___
(Use a comma to separate answers as needed. List the element)
the right answer on this question is 7,9
Thus, list the elements in the set (d ∪ e) ∩ F is {4, 6, 7, 9}.
To find the elements in the set (d ∪ e) ∩ F, we first need to determine what the union of d and e is.
Given that:
d={4,7,9}, e={4,6,7,8} and f={3,5,6,7,9}.
The union of two sets, denoted by the symbol ∪, is the set of all elements that are in either one or both of the sets.
So, in this case, d ∪ e would be the set {4, 6, 7, 8, 9}.
Next, we need to find the intersection of the set {4, 6, 7, 8, 9} and f.
The intersection of two sets, denoted by the symbol ∩, is the set of all elements that are in both sets.
So, the elements in the set (d ∪ e) ∩ F would be the elements that are common to both {4, 6, 7, 8, 9} and {3, 5, 6, 7, 9}. These elements are 4, 6, 7, and 9.
Therefore, the answer to the question is (d ∪ e) ∩ F = {4, 6, 7, 9}.
Know more about the union
https://brainly.com/question/18909282
#SPJ11
tell whether x and y show direct variation, inverse variation, or neither.
xy = 12
The two variables x and y from the given equation shows that they are inverse variations.
What is an inverse variation?Two variables are said to be inverse variations of themselves if the increase in one variable, say for example variable (x) leads to a decrease in another variable (y).
They are usually represented in reciprocal also knowns as inverse of one another. From the given information, we have xy = 12, where x and y are the two variables and 12 is the constant.
To make x the subject of the formula, we have:
x = 12/y
To make y the subject of the formula, we have:
y = 12/x
Learn more about variations here:
https://brainly.com/question/6499629
#SPJ1
how many distinct ways are there to arrange 3 yellow marbles 5 blue marbles and 5 green marbles in a row
The number of distinct ways to arrange 3 yellow marbles, 5 blue marbles, and 5 green marbles in a row will be 5625.
What is a permutation?A permutation is an act of arranging items or elements in the correct order.
There are 3 yellow marbles, 5 blue marbles, and 5 green marbles.
The number of distinct ways to arrange 3 yellow marbles, 5 blue marbles, and 5 green marbles in a row will be
[tex]\Rightarrow (3 \times 5 \times 5)^2[/tex]
[tex]\Rightarrow 75^2[/tex]
[tex]\Rightarrow 5625[/tex]
More about the permutation link is given below.
brainly.com/question/11732255
How do you find a equation from a table
First you need to identify the type of equation in the table, then you can set up the correspondent equation or system of equations to find your equation.
How to find an equation from a table?To find an equation from a table, you will need to identify the pattern or relationship between the given inputs and outputs (so the first thing you need to do, is identify which type of equation is represented by the table)
There are different methods depending on the type of relationship and the data provided. Here are a few common approaches:
Linear Relationship (y = ax + b)
If the table data suggests a linear relationship between the inputs (x-values) and outputs (y-values), you can use the method of finding the equation of a straight line. This can be done by calculating the slope (m) and the y-intercept (b) using two data points from the table.
Quadratic Relationship (y = ax² + bx + c)
If the table data suggests a quadratic relationship, meaning the outputs change according to a quadratic function of the inputs, you can use the method of finding the equation of a quadratic function. This involves using three data points from the table and solving a system of equations to determine the coefficients of the quadratic equation.
Exponential Relationship (y = A*bˣ)
If the table data suggests an exponential relationship, where the outputs change exponentially with respect to the inputs, you can use the method of finding the equation of an exponential function. This involves determining the base and exponent of the exponential function by examining the ratios between the outputs.
Please notice that these are only 3 types of equations, but there are a lot more, like logarithmic functions, trigonometric functions, cubic functions.
And each one will have a different way of setting up equations to find the equation represented in the table.
Learn more about tables at:
https://brainly.com/question/15602982
#SPJ1
An article presents the following fitted model for predicting clutch engagement time in seconds from engagement starting speed in m/s (x1), maximum drive torque in N·m (x2), system inertia in kg • m2 (x3), and applied force rate in kN/s (x4) y=-0.83 + 0.017xq + 0.0895x2 + 42.771x3 +0.027x4 -0.0043x2x4 The sum of squares for regression was SSR = 1.08613 and the sum of squares for error was SSE = 0.036310. There were 44 degrees of freedom for error. Predict the clutch engagement time when the starting speed is 18 m/s, the maximum drive torque is 17 N.m, the system inertia is 0.006 kg•m2, and the applied force rate is 10 kN/s.
The predicted clutch engagement time is approximately 1.81 seconds when the starting speed is 18 m/s, the maximum drive torque is 17 N.m, the system inertia is 0.006 kg•m2, and the applied force rate is 10 kN/s.
The given regression model for predicting clutch engagement time (y) based on four predictor variables (x1, x2, x3, x4) is:
[tex]y = -0.83 + 0.017x1 + 0.0895x2 + 42.771x3 + 0.027x4 - 0.0043x2x4[/tex]
To predict the clutch engagement time when x1 = 18 m/s, x2 = 17 N.m, x3 = 0.006 kg•m2, and x4 = 10 kN/s, we simply substitute these values into the regression equation:
[tex]y = -0.83 + 0.017(18) + 0.0895(17) + 42.771(0.006) + 0.027(10) - 0.0043(17)(10)\\y = -0.83 + 0.306 + 1.5215 + 0.256626 + 0.27 - 0.731[/tex]
y = 1.809126
Therefore, the predicted clutch engagement time is approximately 1.81 seconds when the starting speed is 18 m/s, the maximum drive torque is 17 N.m, the system inertia is 0.006 kg•m2, and the applied force rate is 10 kN/s.
To know more about clutch engagement refer here:
https://brainly.com/question/28257224
#SPJ11
determine the volume of this cube. height = 7 cm length = 14 cm width = 7 cm a. a. 432 cm³. b. b. 682 cm³. c. c. 2744 cm³. d. d. 343 cm³.
This is closest to option d) 343 cm³, The volume of the cube is 343 cm³. which is the correct answer.
The volume of a cube is given by the formula [tex]V = s^3,[/tex] where s is the length of any side of the cube. In this case, the height, length, and width are all equal to 7 cm. Thus, the length of any side of the cube is also 7 cm.
Substituting s = 7 cm into the formula for the volume of a cube, we get:
V = s^3 = 7^3 = 343 cm³
Therefore, the volume of the cube is 343 cm³. This is closest to option d) 343 cm³, which is the correct answer.
Learn more about volume here:
https://brainly.com/question/31606882
#SPJ11
Compute the eigenvalues and eigenvectors of A and A-1. Check the trace ! A=2x2 Matrix: [[0, 2], [2, 1]] A^-1 = 2x2 Matrix: [[1/2, 1], [1/2, 0]]
A^-1 has the _____ has eeigenvectors as A. When A has eigenvalues lambda1 and lambda2, its inverse has eigenvalues ____
The matrix A: [[0, 2], [2, 1]] has two eigen value i.e. λ1 = (1 + sqrt(17))/2,
λ2 = (1 - sqrt(17))/2 and their eigen values are [2/(1 + sqrt(17)), 1] , [2/(1 - sqrt(17)), -1] respectively and similarly the eigen value of the matrix
A^-1 is λ1 = (1 + sqrt(3))/2 , λ2 = (1 - sqrt(3))/2 and their eigen vector is
[2/(1 + sqrt(17)), 1] and [2/(1 - sqrt(17)), -1] respectively and the trace of the matrix A and A-1 is 1 and 1/2 respectively.
To compute the eigenvalues and eigenvectors of matrix A, we need to solve the characteristic equation det(A - λI) = 0, where I is the 2x2 identity matrix.
STEP 1:-This gives us:
det(A - λI) = (0 - λ)(1 - λ) - 4 = λ^2 - λ - 4 = 0
Using the quadratic formula, we can solve for the eigenvalues:
λ1 = (1 + sqrt(17))/2
λ2 = (1 - sqrt(17))/2
STEP 2 :-To find the eigenvectors, we can solve the system of equations (A - λI)x = 0 for each eigenvalue. This gives us:
For λ1:
-λ1x1 + 2x2 = 0
2x1 - (λ1 - 1)x2 = 0
Solving this system, we get the eigenvector [2/(1 + sqrt(17)), 1].
For λ2:
-λ2x1 + 2x2 = 0
2x1 - (λ2 - 1)x2 = 0
Solving this system, we get the eigenvector [2/(1 - sqrt(17)), -1].
STEP 3:-
To compute the eigenvalues and eigenvectors of matrix A^-1, we need to solve the characteristic equation det(A^-1 - λI) = 0. We can simplify this expression using the fact that det(A^-1) = 1/det(A), which gives us:
det(A^-1 - λI) = (1/2 - λ)(-λ) - (1/2)(1) = -λ^2 + (1/2)λ - (1/2) = 0
Using the quadratic formula, we can solve for the eigenvalues:
λ1 = (1 + sqrt(3))/2
λ2 = (1 - sqrt(3))/2
We can see that A^-1 has the same eigenvectors as A, since the equation (A - λI)x = 0 is equivalent to A^-1(Ax - λx) = 0. Therefore, the eigenvectors of A^-1 are [2/(1 + sqrt(17)), 1] and [2/(1 - sqrt(17)), -1].
We can also check that the trace of A is equal to the sum of its eigenvalues, and the trace of A^-1 is equal to the sum of its eigenvalues. We have:
trace(A) = 0 + 1 = 1
trace(A^-1) = 1/2 + 0 = 1/2
Know more about eigenvalues and eigenvectors click here;
https://brainly.com/question/31391960
#SPJ11
NEED HELP ASAP PLEASE!
Answer:
Step-by-step explanation:
From top to bottom: T (true), F (false)
T
F
T 51/109 x 100 = 47%
F (49 + 58)/221 x 100 = 48%
F 109 < 112
Alexandria ate at most two hundred fifty calories more than twice the number of calories her infant sister ate. Alexandria ate eighteen hundred calories. If i represents the number of calories eaten by the infant, which inequality represents the situation?
1,800 less-than-or-equal-to 250 + 2 i
1,800 less-than 250 + 2 i
1,800 + 250 greater-than 2 i
1,800 + 250 greater-than-or-equal-to 2 i
Answer:
Step-by-step explanation:
Answer:
A. 1,800≤250+2i .
Step-by-step explanation:
f sin ( θ ) = 24 /26 , 0 ≤ θ ≤ π 2 , thencos ( θ )=tan ( θ )=sec ( θ )=
Starting with the given equation F sin(θ) = 24/26, we can use trigonometric identities to find expressions for cos(θ), tan(θ), and sec(θ).
First, we square both sides of the equation to get:
F^2 sin^2(θ) = (24/26)^2
Then, we use the identity sin^2(θ) + cos^2(θ) = 1 to solve for cos(θ):
cos^2(θ) = 1 - sin^2(θ)
cos^2(θ) = 1 - (24/26)^2
cos(θ) = ± √(1 - (24/26)^2)
Since 0 ≤ θ ≤ π/2, we know that cos(θ) must be positive, so we take the positive square root:
cos(θ) = √(1 - (24/26)^2)
Next, we can use the fact that tan(θ) = sin(θ)/cos(θ) to find an expression for tan(θ):
tan(θ) = sin(θ)/cos(θ)
tan(θ) = (F sin(θ))/cos(θ)
tan(θ) = (F sin(θ))/√(1 - (24/26)^2)
Finally, we can use the fact that sec(θ) = 1/cos(θ) to find an expression for sec(θ):
sec(θ) = 1/cos(θ)
sec(θ) = 1/√(1 - (24/26)^2)
So, in summary, we have:
cos(θ) = √(1 - (24/26)^2)
tan(θ) = (F sin(θ))/√(1 - (24/26)^2)
sec(θ) = 1/√(1 - (24/26)^2)
Note that we cannot simplify these expressions any further without more information about the value of F.
To know more about value of F, visit:
https://brainly.com/question/13527898
#SPJ11
find the distance from the point (1,2) to the line 4x − 3y = 0
The distance from the point (1,2) to the line 4x - 3y = 0 is 2/5 units.
To find the distance between a point and a line, we need to use the formula:
distance = |ax + by + c| / √(a^2 + b^2)
where a, b, and c are the coefficients of the equation of the line in the form ax + by + c = 0. In this case, the equation of the line is 4x - 3y = 0, so a = 4, b = -3, and c = 0.
To apply the formula, we need to find the values of x and y that correspond to the point (1,2) when they are plugged into the equation of the line. Solving for y in terms of x, we get:
4x - 3y = 0
-3y = -4x
y = (4/3)x
Now we can plug in the coordinates of the point (1,2) and find the distance:
distance = |4(1) - 3(2) + 0| / √(4^2 + (-3)^2)
= |-2| / √(16 + 9)
= 2 / √25
= 2/5
Therefore, the distance from the point (1,2) to the line 4x - 3y = 0 is 2/5 units.
Learn more about line here
https://brainly.com/question/18831322
#SPJ11
express the following extreme values of fx,y (x, y) in terms of the marginal cumulative distribution functions fx (x) and fy (y).
The extreme values of f(x,y) can be expressed in terms of the marginal cumulative distribution functions f_x(x) and f_y(y) using the formulas above.
To express the extreme values of f(x,y) in terms of the marginal cumulative distribution functions f_x(x) and f_y(y), we can use the following formulas:
f(x,y) = (d^2/dx dy) F(x,y)
where F(x,y) is the joint cumulative distribution function of X and Y, and
f_x(x) = d/dx F(x,y)
and
f_y(y) = d/dy F(x,y)
are the marginal cumulative distribution functions of X and Y, respectively.
To find the maximum value of f(x,y), we can differentiate f(x,y) with respect to x and y and set the resulting expressions equal to zero. This will give us the critical points of f(x,y), and we can then evaluate f(x,y) at these points to find the maximum value.
To find the minimum value of f(x,y), we can use a similar approach, but instead of setting the derivatives of f(x,y) equal to zero, we can find the minimum value by evaluating f(x,y) at the corners of the rectangular region defined by the range of X and Y.
Therefore, the extreme values of f(x,y) can be expressed in terms of the marginal cumulative distribution functions f_x(x) and f_y(y) using the formulas above.
Learn more about marginal here:
https://brainly.com/question/13267735
#SPJ11
express x=e−3t, y=4e4t in the form y=f(x) by eliminating the parameter.
the equation of the curve in the form y = f(x) is:
y = 4x^(-4/3)
We can eliminate the parameter t by expressing it in terms of x and substituting into the equation for y.
From the equation x = e^(-3t), we have:
t = -(1/3)ln(x)
Substituting this expression for t into the equation y = 4e^(4t), we get:
y = 4e^(4(-(1/3)ln(x))) = 4(x^(-4/3))
what is parameter?
In mathematics, a parameter is a quantity that defines the characteristics of a mathematical object or system, and whose value can be changed. It is typically denoted by a letter, such as a, b, c, etc., and is often used in mathematical equations or models to express the relationships between different variables.
To learn more about curve visit:
brainly.com/question/28793630
#SPJ11
Express the mass of these planets and moons in both standard and scientific notation. If necessary, round the numbers so that the first factor goes only to the hundredths place
Here are the masses of some planets and moons expressed in both standard and scientific notation:
Planet Mass in Standard NotationMass in Scientific Notation:
Venus = 4,870,000,000,000,000,000,000,000 kg4.87 × 10²⁴ kg
Earth = 5,970,000,000,000,000,000,000,000 kg5.97 × 10²⁴ kg
Mars = 6,420,000,000,000,000,000,000,000 kg6.42 × 10²⁴ kg
Jupiter = 1,898,000,000,000,000,000,000,000,000 kg1.90 × 10²⁷ kg
Saturn = 568,000,000,000,000,000,000,000,000 kg5.68 × 10²⁶ kg
Uranus = 86,800,000,000,000,000,000,000 kg8.68 × 10²⁵ kg
Neptune = 102,000,000,000,000,000,000,000 kg1.02 × 10²⁶ kg
Moon = 7,340,000,000,000,000,000 kg7.34 × 10²² kg
Io = 8,930,000,000,000,000,000 kg8.93 × 10²² kg
Ganymede = 1,480,000,000,000,000,000,000 kg1.48 × 10²³ kg
To learn about the masses here:
https://brainly.com/question/86444
#SPJ11
sophie needs 420 g of flour to bake a cake. her scales only weigh in ounces. how many ounces of flour does she need? 1 ounce
Sophie needs approximately 14.82 ounces of flour to bake her cake .
To convert grams to ounces, we can use the conversion factor that 1 ounce is approximately equal to 28.35 grams . The mass m in grams (g) is equal to the mass m in ounces (oz) times 28.34952
1 ounces = 28.35 gram
So, to find the number of ounces of flour Sophie needs, we can divide the weight in grams by the conversion factor .
420 g × 1 ounces / 28.35 g
420 g / 28.35 g = 14.82 ounces
Therefore, Sophie needs approximately 14.82 ounces of flour to bake her cake .
To know more about ounces click here :
https://brainly.com/question/26950819
#SPJ4
verify that the program segment x :=2 z≔x y if y>0 then z≔z 1 else z≔0 is correct with respect to the initial assertion y=3 and the final assertion z=6.
The program segment is not correct with respect to the given initial and final assertions.
To verify that the program segment x := 2; z := x * y; if y > 0 then z := z + 1 else z := 0 is correct with respect to the initial assertion y = 3 and the final assertion z = 6, we need to check that the program produces the expected values of x, y, and z at every step.
1. Initial assertion: y = 3
This is given in the problem statement.
2. x := 2
After executing this statement, we have x = 2.
3. z := x * y
After executing this statement, we have z = x * y = 2 * 3 = 6.
4. if y > 0 then z := z + 1 else z := 0
Since y = 3 > 0, this condition is true and we execute the first branch of the if statement. Therefore, we have z := z + 1, which gives z = 6 + 1 = 7.
5. Final assertion: z = 6
This assertion is not satisfied, since we have z = 7 instead of z = 6.
Therefore, the program segment is not correct with respect to the given initial and final assertions.
To know more about program segment refer here :
https://brainly.com/question/30931055#
#SPJ11
Prove that a median in a right triangle joining the right angle to the hypothenuse has the same length as the segment connecting midpoints of the legs. Hint: You may want to show first that this median equals half the hypotenuse.
A median in a right triangle joining the right angle to the hypothenuse has the same length as the segment connecting the midpoints of the legs.
The median equals half the hypotenuse
In triangle ABC where ∠B = 90° BD is median
AD = DC median divides into two equal part
DX ⊥ BC
BX = XC = BC/2
DX = AB/2
By Pythagorean theorem
BD² = DX² + BX²
BD² = BC²/4 + AB²/4
BD² = AC²/4
BD = AC/2
Now in triangles BXD and DXC
DX = DX ( common )
AB║ DX
∠BXD = ∠DXC (as corresponding angles )
BX = XC (corresponding side)
By SAS congruency
ΔBXD ≅ ΔDXC
BD = DC
To know more about median click here :
https://brainly.com/question/2272632
#SPJ4
A random sample of size n=200 is to be taken from a uniform population with α=24 and β=48. Based on the central limit theorem, what is the probability that the mean of the sample will be less than 35?
The probability that the mean of the sample will be less than 35 is approximately 0.0205, or 2.05%.
To solve this problem, we'll use the central limit theorem, which states that for a large enough sample size, the distribution of sample means approximates a normal distribution, regardless of the shape of the population distribution.
Given that the population follows a uniform distribution with α = 24 and β = 48, we know that the mean (μ) of the population is given by the formula:
μ = (α + β) / 2
Substituting the values, we have:
μ = (24 + 48) / 2 = 72 / 2 = 36
The standard deviation (σ) of the population is given by the formula:
σ = (β - α) / √12
Substituting the values, we have:
σ = (48 - 24) / √12 = 24 / √12 = 24 / 3.464 = 6.928
According to the central limit theorem, the distribution of sample means follows a normal distribution with a mean equal to the population mean (μ) and a standard deviation equal to the population standard deviation (σ) divided by the square root of the sample size (n). Therefore:
μ_s = μ = 36
σ_s = σ / √n = 6.928 / √200 ≈ 0.490
To find the probability that the mean of the sample will be less than 35, we need to find the area under the normal distribution curve to the left of 35. We'll use a standard normal distribution with a mean of 0 and a standard deviation of 1, and then transform it using the mean and standard deviation of the sample distribution.
Let's calculate the z-score for 35:
z = (x - μ_s) / σ_s = (35 - 36) / 0.490 ≈ -2.041
Using a standard normal distribution table or a calculator, we can find the probability corresponding to a z-score of -2.041. The probability that the mean of the sample will be less than 35 is approximately 0.0205, or 2.05%.
To know more about central limit theorem refer to
https://brainly.com/question/18403552
#SPJ11
Suppose that when your friend was born, your friend's parents deposited $5000 in an account paying 4. 7% interest compounded. What will the account balance be after 18 years?
After 18 years, the account balance will be calculated based on a $5000 deposit with a 4.7% interest compounded.
To calculate the account balance after 18 years, we will use the formula for compound interest:
A = P(1 + r/n)^(nt)
Where:
A = Final account balance
P = Principal amount (initial deposit)
r = Annual interest rate (in decimal form)
n = Number of times interest is compounded per year
t = Number of years
In this case, the principal amount is $5000, the annual interest rate is 4.7% (or 0.047 as a decimal), the interest is compounded annually (n = 1), and the time period is 18 years (t = 18).
Using the formula, we can calculate the account balance:
A = $5000(1 + 0.047/1)^(1*18)
= $5000(1 + 0.047)^18
= $5000(1.047)^18
≈ $5000 * 1.990
≈ $9949.92
Therefore, after 18 years, the account balance will be approximately $9949.92.
Learn more about interest Compounded here
https://brainly.com/question/14295570
#SPJ11
If r = 0.84 and N = 6, the value of tobt for the test of the significance of r is _________.
Group of answer choices
3.46
3.10
2.68
2.40
The value of tobt for the test of the significance of r is 3.10 option B.
To find the value of tobt for the test of the significance of r, we can use the formula:
tobt = (r * √(N - 2)) / √(1 - r²)
Given r = 0.84 and N = 6, we can plug the values into the formula:
tobt = (0.84 * √(6 - 2)) / √(1 - 0.84²)
tobt = (0.84 * √4) / √(1 - 0.7056)
tobt = (0.84 * 2) / √0.2944
tobt = 1.68 / 0.542
tobt ≈ 3.10
The answer is (B) 3.10.
To know more about tobt click on below link :
https://brainly.com/question/31699222#
#SPJ11
A system of equations is given.
Equation 1: 5x − 2y = 10
Equation 2: 4x − 3y = 15
Explain how to eliminate x in the system of equations.
Source
StylesFormatFontSize
Answer:
To eliminate x, you need a positive coefficient in front of x for one equation and its negative counterpart in front of the other equation as a positive number plus its negative opposite equals 0 (e.g., -4 + 4 = 0 and -80 + 80 = 0)
Step 1: Therefore, we can eliminate x by first determining the least common multiple (LCM) between 5 and 4. We know that 5 * 4 = 20 and 4 * 5, so the LCM between 5 and 4 is 20.
Step 2: In order to have 20 as coefficient for x in one equation and -20 for x as a coefficient in the other equation, we can multiply the entire first equation by 4 and the entire second equation by -5:
Equation 1 multiplied by 4: 4 * (5x - 2y = 10) = 20x - 8y = 40
Equation 2 multiplied by -5: -5* (4x - 3y = 15) = -20x + 15y = -75
Step 3: Adding the two equations shows that the xs cancel as 20x - 20x = 0, leaving us with 15y - 8y = 40 - 75, which simplifies to 7y = -35
Answer: See below.
Step-by-step explanation:
First, we are already given these equations in standard form.
5x − 2y = 10
4x − 3y = 15
Next, we need to make the coefficients of the x variables opposites (as in 5 and -5, etc), since we want to eliminate the x's. To do this, we will find a common multiple (here, the Lowest Common Multiplb is 20). Then, we will multiply every term by the number that makes the coefficient of x our common multiple.
We will make the first equation with a coefficient of 20 for the x and the second with a coefficient of -20 for the x.
See this visually below.
5x − 2y = 10 ➜ 4(5x) − 4(2y) = 4(10) ➜ 20x - 8y = 40
4x − 3y = 15 ➜ -5(4x) − -5(3y) = -5(15) ➜ -20x + 15y = -75
Lastly, add these two equations together. The x's are eliminated. This also will let us solve for y.
20x - 8y = 40
+ -20x + 15y = -75
--------------------------------
7y = -35
y = -5
In ΔCDE, the measure of ∠E=90°, CD = 9. 2 feet, and DE = 8. 3 feet. Find the measure of ∠C to the nearest tenth of a degree
The answer of the given question based on the triangle is , - 15.75 , this is not possible as the length cannot be negative.
We are given:
In ΔCDE, the measure of ∠E = 90°, CD = 9.2 feet, and DE = 8.3 feet.
To find:
The measure of ∠C to the nearest tenth of a degree.
Solution:
In ΔCDE, applying Pythagoras theorem:
CE² + CD² = DE²CE² + (9.2)² = (8.3)²
CE² = (8.3)² - (9.2)²CE²
= 68.89 - 84.64CE²
= - 15.75
This is not possible as the length cannot be negative.
Hence, the given values are not possible.
So, there is no such triangle ΔCDE, which satisfies the given conditions.
Hence, we cannot find the measure of ∠C.
To know more about Pythagoras theorem visit:
https://brainly.com/question/32626180
#SPJ11
The ellipse x^2/2^2 + y^2/4^2 = 1
can be drawn with parametric equations. Assume the curve is traced clockwise as the parameter increases. If x = 2 cos(t) then y = __
The parametric equations for the ellipse x^2/2^2 + y^2/4^2 = 1, traced clockwise as the parameter increases, are:
x = 2cos(t)
y = -2sin(t)
To find the corresponding y-value for a given x-value on the ellipse, we can rearrange the equation:
x^2/2^2 + y^2/4^2 = 1
y^2/4^2 = 1 - x^2/2^2
y^2 = 4^2(1 - x^2/2^2)
y = ±2sqrt(1 - x^2/2^2)
Since the curve is traced clockwise as the parameter t increases, we can set x = 2cos(t) and y = -2sqrt(1 - x^2/2^2) to trace the lower half of the ellipse:
x = 2cos(t)
y = -2sqrt(1 - (2cos(t))^2/2^2)
y = -2sqrt(1 - cos^2(t))
Using the identity sin^2(t) + cos^2(t) = 1, we can solve for sin(t):
sin^2(t) = 1 - cos^2(t)
sin(t) = ±sqrt(1 - cos^2(t))
Since we want the negative value to trace the lower half of the ellipse, we have:
y = -2sin(t)
Therefore, the parametric equations for the ellipse x^2/2^2 + y^2/4^2 = 1, traced clockwise as the parameter increases, are:
x = 2cos(t)
y = -2sin(t)
Know more about parametric equations here:
https://brainly.com/question/30451972
#SPJ11
A population of bacteria grows according to the function p(t)=P0(1. 13)^t where t is measured in hours. If the initial population size was 500 cells, approximately how long will it take the population to exceed 10,000 cells? Round your answer to the nearest tenth
Therefore, the population will exceed 10,000 cells in approximately 43.1 hours.
We have a function of the form: p(t) = P0(1.13)^t
The function shows that the population of bacteria grows exponentially over time.
Here, we have to find the time it takes for the population to exceed 10,000 cells given that the initial population is 500 cells. To find this, we need to use the following formula:
p(t) = P0(1.13)^t ≥ 10,000 cells
P0 = 500 cells
Putting the values in the formula, we get:10,000 cells = 500 cells (1.13)^tt = ln(10,000/500) / ln(1.13)t = 43.09 hours.
It will take the population approximately 43.1 hours to exceed 10,000 cells.
To know more about measure visit:
https://brainly.com/question/28913275
#SPJ11