what is the relationship between the speed distribution of a gas and the mass of the particles? how does this help to explain the relative ease with which hydrogen escapes from its containers?

Answers

Answer 1

The speed distribution of gas particles is related to their mass. Lighter particles, such as hydrogen, have higher average speeds compared to heavier particles.

This is because lighter particles have less mass, so they are more easily accelerated by collisions with other particles in the gas.

The relative ease with which hydrogen escapes from its containers can be explained by its high speed and low mass.

Due to its high speed, hydrogen particles are more likely to collide with the walls of a container and bounce off.

These factors combine to make hydrogen more likely to escape from its container compared to heavier gases with lower speeds.

Read more about Speed distribution.

https://brainly.com/question/29840755

#SPJ11


Related Questions

true/false. running water continues to be the major erosive factor of mars today.

Answers

False. Running water is not the major erosive factor on Mars today. Aeolian erosion caused by wind is currently the dominant erosive process on the planet.

Running water is not the major erosive factor on Mars today. While evidence suggests that liquid water existed in the past and played a significant role in shaping Mars' surface features like channels and valleys, the present-day Mars is predominantly cold and dry. The thin atmosphere and low atmospheric pressure make it difficult for liquid water to exist in its liquid form. However, other erosional processes like wind erosion, known as aeolian erosion, are currently more dominant on Mars, shaping the landscape through the action of wind-blown particles and dust storms.

learn more about major here:

https://brainly.com/question/15081536

#SPJ11

if a 6.8 kev photon scatters from a free proton at rest, what is the change in the photon's wavelength (in fm) if the photon recoils at 90°?

Answers

The change in the photon's wavelength is 0.024 fm when it scatters from a free proton at rest and recoils at 90°.

The change in the photon's wavelength (in fm) can be calculated using the Compton scattering formula:

Δλ = h / (m_ec) * (1 - cosθ)

where:

h = Planck's constant (6.626 x 10^-34 J*s)

m_e = mass of electron (9.109 x 10^-31 kg)

c = speed of light (2.998 x 10^8 m/s)

θ = angle of scattering (90° in this case)

Plugging in the values:

Δλ = (6.626 x 10^-34 J*s) / [(9.109 x 10^-31 kg) x (2.998 x 10^8 m/s)] * (1 - cos90°)

   = 0.024 fm

Compton scattering is an inelastic scattering of a photon by a charged particle, resulting in a change in the photon's wavelength and direction.

The scattered photon has lower energy and longer wavelength than the incident photon, while the charged particle recoils with higher energy and momentum.

The degree of wavelength change depends on the angle of scattering and the mass of the charged particle. In this case, the photon is scattered by a proton at rest, resulting in a small change in the photon's wavelength.

To know more about "Photon's wavelength " refer here:

https://brainly.com/question/18415575#

#SPJ11

if the input shaft is rotating at an angular velocity of ωin , what is the angular velocity of the output shaft? each of the larger gear is twice the radius of the smaller gears.

Answers

The angular velocity of the output shaft is half that of the input shaft. Each of the larger gear is twice the radius of the smaller gears.

The angular velocity ratio between two meshed gears is inversely proportional to their radii. Therefore, if the larger gear has a radius twice that of the smaller gear, its angular velocity will be half that of the smaller gear.

Let ωin be the angular velocity of the input shaft and let ωout be the angular velocity of the output shaft. Suppose the smaller gear has a radius of r, then the larger gear has a radius of 2r.

Since the gears are meshed, their linear speeds must be equal. The linear speed of the smaller gear is given by:

[tex]v_1[/tex] = rωin

The linear speed of the larger gear is given by:

[tex]v_2[/tex]= 2r(ωout)

Since the gears are meshed, we have:

[tex]v_1 = v_2[/tex]

Substituting the above equations, we get:

rωin = 2r(ωout)

Simplifying, we get:

ωout = ωin / 2

Therefore, the angular velocity of the output shaft is half that of the input shaft.

To know more about Angular velocity refer here :

https://brainly.com/question/29566139

#SPJ11

How many minutes does it take for an electron to move 1. 0 m down the wire?

Answers

Part A: The electron drift speed in a 70mV/m electric field is approximately 2.14 × 10⁻⁵ m/s.

Part B: To calculate the time it takes for an electron to move 1.0 m down the wire, we need to know the drift speed.

Part C: To determine the number of collisions, we need to know the mean time between collisions.

Part A: The drift speed of electrons in a conductor can be calculated using the formula v = μE, where v is the drift speed, μ is the electron mobility, and E is the electric field strength. Given the electric field strength of 70mV/m, we need to know the electron mobility for gold to calculate the drift speed. Without that information, a precise value cannot be determined.

Part B: To calculate the time it takes for an electron to move 1.0 m down the wire, we need to know the drift speed. Without the specific value of the drift speed, a precise time cannot be calculated.

Part C: To determine the number of collisions, we need to know the mean time between collisions. Given the mean time between collisions of 25fs, we can divide the total time it takes for the electron to move 1.0 m by the mean time between collisions. However, without the specific drift speed or other necessary information, a precise value cannot be calculated.

To learn more about electric field, here

https://brainly.com/question/11482745

#SPJ4

The complete question is:

The mean time between collisions for electrons in a gold wire is What is the electron drift speed in a 70mV/m electric field? 25fs, where 1fs=1 femtosecond =10⁻¹⁵ s. Express your answer with the appropriate units.

Part B How many minutes does it take for an electron to move 1.0 m down the wire? Express your answer in minutes. The mean time between collisions for electrons in a gold wire is How many minutes does it take for an electron to move 1.0 m down the wire? 25fs, where 1fs=1 femtosecond =10⁻¹⁵ s. Express your answer in minutes.

Part C How many times does the electron collide with an ion while moving this distance?

A proton is accelerated through a potential
difference of 4.5 × 106 V.
a) How much kinetic energy has the proton
acquired?
Answer in units of J.
(part 2 of 2)
b) If the proton started at rest, how fast is it
moving?
Answer in units of m/s.

Answers

Therefore, the proton is moving with a velocity of 3.27 x 10^6 m/s after being accelerated through a potential difference of 4.5 x 10^6 V.

The kinetic energy of the proton can be calculated using the equation KE = qV, where q is the charge of the proton (1.6 x 10^-19 C) and V is the potential difference (4.5 x 10^6 V). Substituting these values gives KE = (1.6 x 10^-19 C) x (4.5 x 10^6 V) = 7.2 x 10^-13 J. Therefore, the kinetic energy acquired by the proton is 7.2 x 10^-13 J.
To calculate the velocity of the proton, we can use the equation KE = 0.5mv^2, where m is the mass of the proton (1.67 x 10^-27 kg) and v is the velocity we want to find. Rearranging the equation gives v = sqrt((2KE)/m). Substituting the value of KE we calculated earlier gives v = sqrt((2 x 7.2 x 10^-13 J) / (1.67 x 10^-27 kg)) = 3.27 x 10^6 m/s.

To know more about kinetic energy visit:

https://brainly.com/question/26472013

#SPJ11

two capacitors of 6.00 f and 8.00 f are connected in parallel. the combination is then connected in series with a 12.0-v battery and a 14.0- f capacitor. what is the equivalent capacitance?

Answers

Two capacitors of 6.00 f and 8.00 f are connected in parallel. The combination is then connected in series with a 12.0-v battery and a 14.0- f capacitor. We have to find the equivalent capacitance.

To find the equivalent capacitance of the given circuit, which includes two capacitors of 6.00 F and 8.00 F connected in parallel, and then the combination connected in series with a 12.0-V battery and a 14.0-F capacitor, follow these steps:

Step 1: Calculate the capacitance of the parallel combination of the 6.00 F and 8.00 F capacitors using the formula for parallel capacitance:
C_parallel = C1 + C2
C_parallel = 6.00 F + 8.00 F = 14.00 F

Step 2: Calculate the equivalent capacitance of the entire circuit, which includes the 14.00 F parallel combination connected in series with the 14.0 F capacitor. Use the formula for series capacitance:
1/C_equivalent = 1/C_parallel + 1/C3
1/C_equivalent = 1/14.00 F + 1/14.0 F

Step 3: Solve for C_equivalent:
1/C_equivalent = 2/14 F
C_equivalent = 14 F / 2
C_equivalent = 7.00 F

The equivalent capacitance of the given circuit is 7.00 F.

Learn more about capacitors at: https://brainly.com/question/21851402

#SPJ11

the time difference between the cue and response termination is called response time.

Answers

Yes, the time difference between the cue and response termination is called response time.

Response time refers to the time it takes for an individual to process information presented to them and produce a response. This can vary depending on various factors such as the complexity of the task, the individual's cognitive abilities, and external distractions. In some cases, response time can be very short, such as in a reflexive reaction, while in other cases, it may be longer, such as when solving a complex problem. Overall, response time is an important measure of cognitive processing and can provide valuable insights into human behavior and performance.

Response time, also known as reaction time, refers to the period between the presentation of a stimulus (cue) and the end of the individual's reaction (response termination). It is used to measure the speed and efficiency of a person's cognitive and motor processes in various situations.

To know more about termination visit:-

https://brainly.com/question/30911594

#SPJ11

a 0.49-mm-wide slit is illuminated by light of wavelength 520 nm. What is the width of the central maximum on a screen 2.0 m behind the slit? Please answer in mm.

Answers

A 0.49-mm-wide slit is illuminated by light of wavelength 520 nm. The width of the central maximum on the screen is 2.12 mm.

The central maximum of a single-slit diffraction pattern is given by the equation

w = (λL)/w

Where w is the width of the slit, λ is the wavelength of light, and L is the distance between the slit and the screen.

Plugging in the given values, we get

w = (520 nm x 2.0 m)/0.49 mm = 2.12 mm

Therefore, the width of the central maximum on the screen is 2.12 mm.

To know more about width here

https://brainly.com/question/14703325

#SPJ4

true/false. the body of a for loop will contain one statement for each element of the iteration list.

Answers

False. The body of a for loop does not necessarily need to contain one statement for each element of the iteration list. In a for loop, the body is executed once for each element in the iteration list.

However, the body can contain multiple statements, including conditional statements, function calls, or any other valid code. It is common to have multiple statements within the body of a for loop to perform different actions or computations for each iteration. The number of statements within the loop body depends on the specific requirements of the program and the desired functionality. The body of a for loop does not necessarily need to contain one statement for each element of the iteration list. In a for loop, the body is executed once for each element in the iteration list.

learn more about loop here:

https://brainly.com/question/17067964

#SPJ11

Water flows through the 30-mm-diameter pipe and is ejected with a velocity of 25 m/s at B from the 10-mm diameter nozzle. Determine the pressure and the velocity of the water at A 300 mm

Answers

This problem can be solved by applying the principle of conservation of mass and energy. According to the principle of continuity, the mass flow rate of water through any cross-section of a pipe must be constant. Therefore, the mass flow rate at point A is equal to the mass flow rate at point B.

Let's denote the pressure and velocity of water at point A as P_A and V_A, respectively. Similarly, let P_B and V_B be the pressure and velocity of water at point B, respectively.

From the problem statement, we know that the diameter of the pipe at A is 30 mm and the diameter of the nozzle at B is 10 mm. Therefore, the cross-sectional area of the pipe at A is (π/4)(0.03^2) = 7.07 x 10^-4 m^2, and the cross-sectional area of the nozzle at B is (π/4)(0.01^2) = 7.85 x 10^-5 m^2.

Since the mass flow rate is constant, we can write:

ρ_AV_A = ρ_BV_Bwhere ρ_A and ρ_B are the densities of water at points A and B, respectively.

We can rearrange this equation to solve for V_A:

V_A = V_B(ρ_B/ρ_A) = 25(1000/997) = 25.08 m/sTherefore, the velocity of the water at A is 25.08 m/s.

To find the pressure at point A, we can apply the principle of conservation of energy. Neglecting losses due to friction, we can assume that the total mechanical energy of the water is conserved between points A and B. Therefore, we can write:

(P_A/ρ) + (V_A^2/2g) = (P_B/ρ) + (V_B^2/2g)

where ρ is the density of water and g is the acceleration due to gravity.

We can rearrange this equation to solve for P_A:

P_A = P_B + (ρ/2)(V_B^2 - V_A^2)

Plugging in the values we know, we get:

P_A = P_B + (997/2)(25^2 - 25.08^2) = P_B - 125.7 Pa

Therefore, the pressure at point A is 125.7 Pa lower than the pressure at point B.

Learn More About velocity at https://brainly.com/question/80295

#SPJ11

a diffraction grating has 480 lines per millimeter. what is the highest order bright fringe that can be observed for red light ( λ0 = 700 nm )?

Answers

The highest order bright fringe that can be observed for red light (λ0 = 700 nm) with a diffraction grating of 480 lines per millimeter is 2.

To determine the highest order bright fringe for red light with a diffraction grating of 480 lines per millimeter, we will use the following equation:

mλ = d × sin(θ)

where:
- m is the order of the bright fringe
- λ is the wavelength of the light (700 nm for red light)
- d is the distance between the grating lines (1/480 mm)
- θ is the angle of diffraction

To find the highest order (m), we need to find the maximum value of sin(θ), which is 1. Rearranging the formula to solve for m:

m = d × sin(θ) / λ

Now, we can plug in the given values:

d = 1/480 mm = 1/480 × [tex]10^6[/tex] nm = 2083.33 nm (to keep the units consistent)
λ = 700 nm
sin(θ) = 1

m = (2083.33 nm ×1) / 700 nm
m ≈ 2.98

Since the order m must be an integer, we round down to the nearest whole number:

m = 2

The highest order bright fringe that can be observed for red light (λ0 = 700 nm) with a diffraction grating of 480 lines per millimeter is 2.

To know more about Red light refer here :

https://brainly.com/question/13393009

#SPJ11

a standard deck has 52 cards, 13 cards each of 4 suits: clubs, diamonds, spade, hearts. five cards are drawn from the deck. what is the probability that all give cards are a black card?

Answers

The probability that all five cards drawn are black is approximately 0.002641, or about 0.26%.

There are 26 black cards in the deck (13 clubs and 13 spades), and a total of 52 cards. So the probability of drawing a black card on the first draw is 26/52, or 1/2. Since we want all five cards drawn to be black, we need to calculate the probability of drawing a black card on each subsequent draw, given that the previous card was also black.

Since there are now 25 black cards left in the deck (out of a total of 51 cards remaining), the probability of drawing a black card on the second draw is 25/51. Using the same logic, the probability of drawing a black card on the third draw is 24/50, on the fourth draw is 23/49, and on the fifth draw is 22/48.

To find the probability of all five cards being black, we need to multiply the probability of drawing a black card on each draw together:

(1/2) x (25/51) x (24/50) x (23/49) x (22/48) = 0.002641



To know more about the Deck, here

https://brainly.com/question/17003060

#SPJ4

A function is given. h(t) = 2t2 − t; t = 5, t = 8. Determine the net change between the given values of the variable.

Answers

To determine the net change between the given values of the variable, we need to find the difference between the values of h(t) at t=5 and t=8. The net change between the given values of the variable t (5 and 8) for the function h(t) = 2t² - t is 75.


A function is a relation between input (in this case, t) and output (h(t)), which assigns each input value to a unique output value. In this problem, the function is h(t) = 2t² - t.


The net change refers to the difference between the output values of a function at two specific points. In this case, we need to find the net change between the given values of t, which are 5 and 8.


First, we need to find the output values for t = 5 and t = 8 by plugging these values into the function h(t) = 2t² - t:
For t = 5: h(5) = 2(5²) - 5 = 2(25) - 5 = 50 - 5 = 45
For t = 8: h(8) = 2(8²) - 8 = 2(64) - 8 = 128 - 8 = 120


Now, we can determine the net change between these output values by subtracting the output value at t = 5 from the output value at t = 8: Net Change = h(8) - h(5) = 120 - 45 = 75, Therefore, the net change between the given values of the variable t (5 and 8) for the function h(t) = 2t² - t is 75.

Know more about function here:

https://brainly.com/question/12431044

#SPJ11

How might you estimate the collision time of a baseball and a bat?

Answers

To estimate the collision time of a baseball and a bat, you would need to consider factors such as the velocity of the pitch, the speed of the swing, and the distance between the pitcher and the batter. One way to estimate the collision time is to use the formula

Time = distance ÷ velocity. Here, the distance would be the length of the bat and the velocity would be the speed of the pitch. For example, if the pitch is travelling at 90 miles per hour and the length of the bat is 3 feet, the collision time would be approximately 0.0125 seconds.

To get a more accurate estimate, you could also take into account the angle of the swing and the position of the ball at the moment of impact. Another method would be to use high-speed cameras to record the collision and then measure the time between the ball leaving the pitcher's hand and hitting the bat. By using these methods, you can estimate the collision time of a baseball and a bat.

Learn  more about collision here ;

https://brainly.com/question/28986861

#SPJ11

A small plane flew 892 miles in 4 hours with the wind. Then onthe return trip, flying against the wind, it only traveled 555 miles in 4 hours. Whar were the wind velocity and the speed of the plane?

Answers

The wind velocity is 42 mph and the speed of the plane in still air is 222 mph.

To solve this problem, you can use the following steps:

1. Let x represent the speed of the plane in still air, and y represent the wind velocity.
2. When flying with the wind, the total speed is (x + y) and when flying against the wind, the total speed is (x - y).
3. Write two equations based on the given information:
  a) (x + y) * 4 = 892
  b) (x - y) * 4 = 555
4. Solve these equations simultaneously:
  a) x + y = 223
  b) x - y = 139
5. Add the equations together:
  2x = 362
  x = 181
6. Substitute x back into one of the equations to find y:
  181 + y = 223
  y = 42

So, the wind velocity is 42 mph and the speed of the plane in still air is 181 mph.

To know more about equations click on below link:

https://brainly.com/question/29538993#

#SPJ11

two forces of 640 n and 410 n (newtons) act on an object. the angle between the forces is 55°. find the magnitude of the resultant and the angle that it makes with the larger force.

Answers

The magnitude of the resultant force is 942.18 N, and the angle it makes with the larger force is 39.7°.

To solve this problem, we can use the following steps:

1. Calculate the magnitude of the resultant force using the law of cosines.

F_resultant^2 = F1^2 + F2^2 - 2 * F1 * F2 * cos(angle)

F_resultant^2 = (640 N)^2 + (410 N)^2 - 2 * (640 N) * (410 N) * cos(55°)

F_resultant^2 ≈ 276687

F_resultant ≈ 526 N

2. Calculate the angle between the resultant force and the larger force using the law of sines.

sin(angle) / F2 = sin(opposite_angle) / F_resultant

sin(angle) = (sin(opposite_angle) * F2) / F_resultant

sin(angle) = (sin(55°) * 410 N) / 526 N

angle ≈ 39.7°

So, the magnitude of the resultant force acting on the object is approximately 942.18 N, and it makes an angle of approximately 39.7° with a larger force of 640 N.

To know more about the resultant force, click here;

https://brainly.com/question/16380983

#SPJ11

a hobbyist launches a projectile from ground level on a horizontal plane. it reaches a maximum height of 70 m and lands 100 m from the launch point, with no appreciable air resistance. what was the angle of launch if g

Answers

The angle of launch for the projectile to reach a maximum height of 70 m and land 100 m from the launch point, with no appreciable air resistance, is approximately 55.1 degrees.

The projectile motion of the hobbyist's launch can be analyzed using kinematic equations, considering both horizontal and vertical components. Given the maximum height (70 m) and horizontal range (100 m), we can determine the angle of launch (θ). The acceleration due to gravity (g) is -9.81 m/s².

First, we can calculate the time of flight (t) using the vertical motion:

1. h = Vi_y*t + 0.5*(-g)*t², where h = 70 m, Vi_y = initial vertical velocity
2. 70 = Vi_y*t + 0.5*(-9.81)*t²

Next, we determine the horizontal motion:

3. R = Vi_x*t, where R = 100 m, Vi_x = initial horizontal velocity

We know that Vi_x = Vi*cos(θ) and Vi_y = Vi*sin(θ), where Vi is the initial velocity. From equations 2 and 3, we can form the following equation:

4. tan(θ) = Vi_y / Vi_x = (100/70)

Using the inverse tangent function, we find the angle of launch:

θ = arctan(100/70) ≈ 55.1 degrees

Learn more about air resistance here:-

https://brainly.com/question/11019447

#SPJ11

Light of wavelength 485 nm passes


through a single slit of width


8. 32 x 10-6 m. What is the angle


between the first (m = 1) and second


(m = 2) interference minima?


[?]


Remember: nano means 10-9


Help PLSS!!!!

Answers

The angle between the first and second interference minima for light of wavelength 485 nm passing through a single slit of width 8.32 x 10^-6 m is approximately 0.034 degrees.

This can be calculated using the formula θ = λ / (m * d), where λ is the wavelength, m is the order of the minimum, and d is the slit width. The formula for the angle θ between interference minima in a single slit diffraction pattern is given by θ = λ / (m * d), where λ is the wavelength of light, m is the order of the minimum (1 for the first minimum, 2 for the second minimum, and so on), and d is the width of the slit. In this case, the wavelength is 485 nm (or 485 x 10^-9 m) and the slit width is 8.32 x 10^-6 m. Plugging these values into the formula, we get θ = (485 x 10^-9) / (2 * 8.32 x 10^-6), which simplifies to approximately 0.034 degrees.

learn more about wavelength here:

https://brainly.com/question/30133721

#SPJ11

a 4.70 μfμf capacitor that is initially uncharged is connected in series with a 5.20 kωkω resistor and an emf source with e=e= 140 vv negligible internal resistance.(A) Just after the circuit is completed, what is the voltage drop across the capacitor?(B) Just after the circuit is completed, what is the voltage drop across the resistor?(C) Just after the circuit is completed, what is the charge on the capacitor?(D) Just after the circuit is completed, what is the current through the resistor?

Answers

(A) Just after the circuit is completed, the voltage drop across the capacitor will be zero as it is initially uncharged. However, as the capacitor starts to charge, the voltage across it will gradually increase.

(B) Just after the circuit is completed, the voltage drop across the resistor can be found using Ohm's law: V = IR. Therefore, V = (5.20 kΩ) × I. As there is no charge on the capacitor at this point, the current through the circuit will be the same as the current through the resistor.

(C) Just after the circuit is completed, the charge on the capacitor will be zero as it is initially uncharged. However, as the capacitor starts to charge, the charge on it will gradually increase. The charge on the capacitor can be found using the formula Q = CV, where C is the capacitance and V is the voltage across the capacitor.

(D) Just after the circuit is completed, the current through the resistor can be found using Ohm's law: I = V/R. As there is no charge on the capacitor at this point, the voltage drop across the resistor will be the same as the voltage of the emf source, which is 140 V. Therefore, I = (140 V) / (5.20 kΩ) ≈ 0.027 A (Amps).

To know more about internal resistance visit:

https://brainly.com/question/15106247

#SPJ11

what is the longest wavelength that can be observed in the third order for a transmission grating having 7300 slits/cm ? assume normal incidence.

Answers

The longest wavelength that can be observed in the third order for the given transmission grating is approximately 3.42 × 10^(-5) cm (or 342 nm).

What is wavelength?

To determine the longest wavelength observed in the third order for a transmission grating, we can use the grating equation:

mλ = d sin(θ)

where:

m is the order of the spectrum (in this case, m = 3 for the third order),

λ is the wavelength of light,

d is the grating spacing (distance between adjacent slits), and

θ is the angle of diffraction.

In this case, we have a transmission grating with 7300 slits/cm, which means the grating spacing (d) is equal to 1/7300 cm.

Assuming normal incidence (θ = 0), the equation simplifies to:

mλ = d

Now, we can substitute the values:

3λ = 1/7300 cm

To find the longest wavelength, we need to find the maximum value of λ. Rearranging the equation, we have:

λ = (1/7300 cm) / 3

Calculating this, we get:

λ ≈ 3.42 × 10^(-5) cm

Therefore, the longest wavelength that can be observed in the third order for the given transmission grating is approximately 3.42 × 10^(-5) cm (or 342 nm).

Learn more about wavelength

brainly.com/question/31143857

#SPJ11

Andrea, whose mass is 55 kg , thinks she's sitting at rest in her 6.0 m -long dorm room as she does her physics homework. Part A: If not, within what range is her velocity likely to be?

Answers

Andrea's velocity range is likely to be non-zero, indicating she is not sitting at rest. The specific range of her velocity cannot be determined without additional information.

Andrea, with a mass of 55 kg, believes she is stationary in her 6.0 m-long dorm room while working on her physics homework. However, according to the laws of physics, she is not truly at rest. Due to the Earth's rotation, Andrea is actually moving with the rotation of the planet. The Earth's equatorial rotational speed is approximately 1670 km/h (465 m/s). Therefore, her velocity within her dorm room is likely to be within the range of -465 m/s to +465 m/s, depending on her specific location and the direction of rotation. It is essential to consider the Earth's rotation when determining the true velocity of an object seemingly at rest on its surface.

Learn more about Andrea's here:

https://brainly.com/question/31459209

#SPJ11

a small box is held in place against a rough vertical wall by someone pushing on it with a force directed upward at 28 degrees above the horizontal. the coefficients of static and kinetic friction between the box and wall are 0.40 and 0.30, respectively. the box slides down unless the applied force has magnitude 18 n. what is the mass of the box in kilograms?

Answers

To determine the mass of the box, we can use the given information about the applied force, the angle of the force, and the coefficients of static and kinetic friction. Let's go through the steps to calculate the mass:

1. Resolve the applied force into its vertical and horizontal components. The vertical component is given by Fv = F × sin(θ), where F is the magnitude of the force and θ is the angle above the horizontal. In this case, F = 18 N and θ = 28 degrees. Thus, Fv = 18 N × sin(28 degrees).

2. Determine the maximum force of static friction that can act on the box to prevent it from sliding down. The maximum static friction force (Fsf) is given by Fsf = μs × N, where μs is the coefficient of static friction and N is the normal force acting on the box. The normal force is equal to the weight of the box, which is given by N = mg, where m is the mass of the box and g is the acceleration due to gravity (approximately 9.8 m/s^2).

3. Set up the equilibrium condition in the vertical direction. The vertical forces acting on the box are the vertical component of the applied force (Fv) and the maximum static friction force (Fsf). The equilibrium condition states that the sum of the forces in the vertical direction must be zero. So, we have Fv - Fsf = 0.

4. Substitute the expressions from steps 1 and 2 into the equilibrium condition equation and solve for the mass (m). This will give us the mass of the box in kilograms.

After performing the calculations, you should obtain the mass of the box.

Learn more about kinetic friction here :-

https://brainly.com/question/30886698

#SPJ11

The Earth moves at a uniform speed around the Sun in an approximately circular orbit of radius r = 1.50×1011 m.

Answers

The Earth moves at a uniform speed of approximately 29.8 kilometers per second (18.5 miles per second) around the Sun in a circular orbit with a radius of 1.50×1011 meters.

According to Kepler's laws of planetary motion, planets move in elliptical orbits around the Sun, but the Earth's orbit is nearly circular. The Earth's average orbital speed is approximately constant due to the conservation of angular momentum. By dividing the circumference of the Earth's orbit (2πr) by the time it takes to complete one orbit (approximately 365.25 days or 31,557,600 seconds), we can calculate the average speed. Thus, the Earth moves at an average speed of about 29.8 kilometers per second (or 18.5 miles per second) in its orbit around the Sun, covering a distance of approximately 940 million kilometers (584 million miles) each year.

learn more about speed here:

https://brainly.com/question/28224010

#SPJ11

A hydraulic lift is used to lift a car that weighs 1400 kg. The foot pedal is attached to a piston that has an area of 50 cm2. This is attached to a lift with a large piston with an area of 4400 cm2.a. What force needs to be applied to the small piston in order to lift the car?b. How far will the smaller piston need to be pushed in order to raise the car by 2 meters?

Answers

The smaller piston needs to be pushed approximately 176 meters to

raise the car by 2 meters

a. To determine the force needed to lift the car using the hydraulic lift,

we can use Pascal's law, which states that the pressure in a fluid is

transmitted equally in all directions.

The formula for calculating the force exerted by the hydraulic lift is:

Force = Pressure * Area

Given:

Area of the small piston (A₁) = 50 cm²

Area of the large piston (A₂) = 4400 cm²

Weight of the car (W) = 1400 kg (weight is equivalent to mass multiplied

by acceleration due to gravity, which is approximately 9.8 m/s²)

First, we need to find the pressure exerted by the small piston:

Pressure₁ = Force₁ / Area₁

Since the pressure is transmitted equally, we can equate the pressure in

the small piston to the pressure in the large piston:

Pressure₁ = Pressure₂

Force₁ / Area₁ = Force₂ / Area₂

Substituting the given values:

Force₁ / 50 cm² = W / 4400 cm²

Solving for Force₁:

Force₁ = (W / 4400 cm²) * 50 cm²

Converting cm² to m²:

Force₁ = (W / 4400) * 0.005 m²

Substituting the weight of the car:

Force₁ = (1400 kg / 4400) * 0.005 m²

Calculating the force:

Force₁ = 2.84 kN (rounded to two decimal places)

Approximately 2.84 kilonewtons of force needs to be applied to the

small piston to lift the car.

b. To determine how far the smaller piston needs to be pushed to raise

the car by 2 meters, we can use the concept of equal pressure in the

hydraulic system.

The ratio of the distances moved by the small piston (d₁) and the large

piston (d₂) is equal to the ratio of their respective areas:

d₁ / d₂ = A₂ / A₁

Substituting the given values:

d₁ / d₂ = 4400 cm² / 50 cm²

Simplifying:

d₁ / d₂ = 88

We know that d₂ is 2 meters. We can substitute this value and solve for d₁:

d₁ / 2 m = 88

d₁ = 88 * 2 m

d₁ = 176 m

To know more about Pascal's law refer here

https://brainly.com/question/29875098#

#SPJ11

Consider steady, incompressible, parallel, laminar flow of
a viscous fluid falling between two infinite vertical walls
(Fig. 5). The distance between the walls is h, and gravity
acts in the negative z-direction (downward in the figure).
There is no applied (forced) pressure driving the flow—
the fluid falls by gravity alone. The pressure is constant
everywhere in the flow field. Calculate the velocity field
and sketch the velocity profile using appropriate
nondimensionalized variables.

Answers

The maximum velocity, which occurs at the midpoint between the walls is u non dim = u(y)/u(h/2) = √(2y/h)

The Navier-Stokes equations, which govern the motion of fluid. We will assume that the flow is steady, incompressible, and laminar. This means that the velocity and other fluid properties do not change with time, the fluid density is constant, and the fluid flows in layers that do not mix.

We can simplify the Navier-Stokes equations by making a few assumptions. First, since the pressure is constant everywhere in the flow field, we can assume that the pressure gradient is zero. Second, since the flow is parallel to the walls, we can assume that the velocity is only a function of the distance between the walls (y) and the height (z) above the lower wall. Third, since the flow is in the negative z-direction, we can assume that the velocity component in the z-direction is negligible compared to the other two components.

With these assumptions, the Navier-Stokes equations simplify to:

∂u/∂y + ∂v/∂z = 0             (1)

ρu∂u/∂y + ρv∂u/∂z = -ρg (2)

ρu∂v/∂y + ρv∂v/∂z = 0     (3)

where u and v are the velocity components in the y- and z-directions, respectively, ρ is the fluid density, g is the acceleration due to gravity, and y and z are the coordinates in the y- and z-directions, respectively.

Equation (1) tells us that the velocity profile must be constant along lines of constant mass flow rate, which in this case are horizontal lines. Therefore, the velocity must be a function of y only, and we can write:

v(y,z) = w(y)                      (4)

Equation (3) tells us that the v-component of velocity is constant along vertical lines. Since the flow is symmetric about the midpoint between the walls, we can assume that the v-component is zero everywhere. Therefore, we have:

v(y,z) = 0                         (5)

Equation (2) becomes:

ρu∂u/∂y = -ρg                (6)

Integrating Equation (6) with respect to y gives:

u^2/2 = -gy + C (7)where C is a constant of integration. To determine C, we apply the no-slip boundary condition, which states that the fluid velocity must be zero at the walls. Therefore, we have:

w(0) = w(h) = 0               (8)

Substituting Equation (7) into Equation (8) and solving for C gives:

C = gh/2                         (9)

u(y) = √(2ghy/h)        (10)

We can nondimensionalize the velocity by dividing by the maximum velocity, which occurs at the midpoint between the walls:

u non dim = u(y)/u(h/2) = √(2y/h) (11)

To know more about velocity

https://brainly.com/question/15579455

#SPJ4

You add 4000 J of heat to a piece of iron and you observe a temperature rise of 22.0 ∘C. A)What is the mass of the iron? in kg B)How much heat would you have to add to an equal mass of water to get the same temperature rise? answer in kJ C)Explain the difference in your results for Parts A and B. Explain the difference in your results for Parts A and B. 1)Compared with iron, water requires more heat to change its temperature because its specific heat is greater than that of iron. 2)Compared with iron, water requires less heat to change its temperature because its specific heat is greater than that of iron. 3)Compared with iron, water requires more heat to change its temperature because its specific heat is less than that of iron. 4)Compared with water, iron requires more heat to change its temperature because its specific heat is greater than that of water.

Answers

The mass of the iron is 0.08333 kg. The heat required to raise the temperature of an equal mass of water by the same amount is 0.07803 kJ. The mass of the iron is much smaller than that of an equal mass of water, even though the temperature rise is the same. Option 2) is the correct explanation for the difference in the results for Parts A and B.

A) To determine the mass of the iron, we can use the formula:

q = mcΔT

Where q is the heat added, m is the mass, c is the specific heat capacity of iron, and ΔT is the temperature change.

Rearranging the formula, we get:

m = q / cΔT

Substituting the given values, we get:

m = 4000 J / (0.45 J/g⋅∘C × 22.0 ∘C) = 83.33 g = 0.08333 kg

Therefore, the mass of the iron is 0.08333 kg.

B) To calculate the heat required to raise the temperature of an equal mass of water by the same amount, we can use the same formula:

q = mcΔT

However, we need to use the specific heat capacity of water, which is 4.18 J/g⋅∘C.

Substituting the given values, we get:

q = (0.08333 kg) × (4.18 J/g⋅∘C) × (22.0 ∘C) = 78.03 J = 0.07803 kJ

Therefore, the heat required to raise the temperature of an equal mass of water by the same amount is 0.07803 kJ.

C) The difference in the results for Parts A and B is explained by the specific heat capacity of the substances. Specific heat capacity is the amount of heat required to raise the temperature of 1 gram of a substance by 1 degree Celsius. Water has a higher specific heat capacity than iron, meaning it requires more heat to raise its temperature by the same amount as iron. Therefore, a smaller amount of heat is required to raise the temperature of iron compared to water. This is why the mass of the iron is much smaller than that of an equal mass of water, even though the temperature rise is the same. Option 2) is the correct explanation for the difference in the results for Parts A and B.

Learn more about temperature  here:-

https://brainly.com/question/30898098

#SPJ11

Calculate the standard potential, E^degrees, for this reaction from its equilibrium constant at 298 K.
X(s) + Y^4+(aq) <---> X^4+(aq) + Y(s) K=3.90x10^5
E^degree =?V

Answers

The  standard cell potential for the given reaction is -0.559 V.

The relationship between the equilibrium constant and the standard cell potential is given by the Nernst equation:

E = E^o - (RT/nF) ln K

where E is the cell potential at any given condition, E^o is the standard cell potential, R is the gas constant, T is the temperature in Kelvin, n is the number of moles of electrons transferred, F is the Faraday constant, and ln K is the natural logarithm of the equilibrium constant.

At standard conditions (298 K, 1 atm, 1 M concentrations), the cell potential is equal to the standard cell potential. Therefore, we can use the Nernst equation to find the standard cell potential from the equilibrium constant:

E^o = E + (RT/nF) ln K

Since there are four electrons transferred in this reaction, n = 4. Substituting the values:

E^o = 0 + (8.314 J/mol*K)(298 K)/(4*96485 C/mol) ln (3.90x10^5)

E^o = -0.559 V

Therefore, the standard cell potential for the given reaction is -0.559 V.

Visit to know more about Standard cell potential:-

brainly.com/question/14115211

#SPJ11

A 1. 5 kg bowling pin is hit with an 8 kg bowling ball going 6. 8 m/s. The pin bounces off the ball at 3. 0 m/s. What is the speed of the bowling ball after the collision?

Answers

After the collision between the 1.5 kg bowling pin and the 8 kg bowling ball, the bowling ball's speed can be calculated using the law of conservation of momentum. The speed of the bowling ball after the collision is approximately 6.8 m/s.

According to the law of conservation of momentum, the total momentum before the collision is equal to the total momentum after the collision. Mathematically, this can be represented as:

[tex]\(m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v_1' + m_2 \cdot v_2'\)[/tex]

Where:

[tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] are the masses of the bowling pin and the bowling ball, respectively.

[tex]\(v_1\)[/tex] and [tex]\(v_2\)[/tex] are the initial velocities of the bowling pin and the bowling ball, respectively.

[tex]\(v_1'\)[/tex] and [tex]\(v_2'\)[/tex] are the final velocities of the bowling pin and the bowling ball, respectively.

Plugging in the given values, we have:

[tex]\(1.5 \, \text{kg} \cdot 6.8 \, \text{m/s} + 8 \, \text{kg} \cdot 0 \, \text{m/s} = 1.5 \, \text{kg} \cdot 3.0 \, \text{m/s} + 8 \, \text{kg} \cdot v_2'\)[/tex]

Simplifying the equation, we find:

[tex]\(10.2 \, \text{kg} \cdot \text{m/s} = 4.5 \, \text{kg} \cdot \text{m/s} + 8 \, \text{kg} \cdot v_2'\)[/tex]

Rearranging the equation to solve for [tex]\(v_2'\)[/tex], we get:

[tex]\(8 \, \text{kg} \cdot v_2' = 10.2 \, \text{kg} \cdot \text{m/s} - 4.5 \, \text{kg} \cdot \text{m/s}\) \\\(v_2' = \frac{{10.2 \, \text{kg} \cdot \text{m/s} - 4.5 \, \text{kg} \cdot \text{m/s}}}{{8 \, \text{kg}}}\)\\\(v_2' \approx 0.81 \, \text{m/s}\)[/tex]

Therefore, the speed of the bowling ball after the collision is approximately 0.81 m/s.

To learn more about momentum refer:

https://brainly.com/question/1042017

#SPJ11

T/F: heating a sample too quickly in the mp apparatus will result in an error with the melting point appearing lower than what the sample melts at

Answers

True.

Heating a sample too quickly in the melting point apparatus can result in an error with the melting point appearing lower than what the sample actually melts at.

This is because rapid heating can cause the sample to heat unevenly, leading to a distorted melting point.

The outer layer of the sample may appear to melt before the inner core has reached its melting point, causing the observed melting point to be lower than the actual melting point.

To obtain an accurate melting point, it is important to heat the sample slowly and uniformly to ensure that the entire sample reaches the same temperature.

To know more about True refer here

https://brainly.com/question/30589045#

#SPJ11

How does the width of the central maximum of a circular diffraction pattern produced by a circular aperture change with apertur size for a given distance between the viewing screen? the width of the central maximum increases as the aperture size increases the width of the central maximum does not depend on the aperture size the width of the central maximum decreases as the aperture size decreases the width of the central maximum decreases as the aperture size increases

Answers

The width of the central maximum of a circular diffraction pattern produced by a circular aperture change with aperture size for a given distance between the viewing screen is the width of the central maximum increases as the aperture size increases.

The formula for the width of the centre maximum of a circular diffraction pattern formed by a circular aperture is:

w = 2λf/D

where is the light's wavelength, f is the distance between the aperture and the viewing screen, and D is the aperture's diameter. This formula applies to a Fraunhofer diffraction pattern in which the aperture is far from the viewing screen and the light rays can be viewed as parallel.

We can see from this calculation that the breadth of the central maxima is proportional to the aperture size D. This means that as the aperture size grows, so does the width of the central maxima.

For such more question on aperture:

https://brainly.com/question/2279091

#SPJ11

The width of the central maximum of a circular diffraction pattern produced by a circular aperture is inversely proportional to the aperture size for a given distance between the viewing screen. This means that as the aperture size increases, the width of the central maximum decreases, and as the aperture size decreases, the width of the central maximum increases.

This relationship can be explained by considering the constructive and destructive interference of light waves passing through the aperture. As the aperture size increases, the path difference between waves passing through different parts of the aperture becomes smaller. This results in a narrower region of constructive interference, leading to a smaller central maximum width.

On the other hand, when the aperture size decreases, the path difference between waves passing through different parts of the aperture becomes larger. This results in a broader region of constructive interference, leading to a larger central maximum width.

In summary, the width of the central maximum in a circular diffraction pattern is dependent on the aperture size, and it decreases as the aperture size increases, and vice versa. This is an essential concept in understanding the behavior of light when it interacts with apertures and how diffraction patterns are formed.

learn more about circular diffraction here: brainly.com/question/31595795

#SPJ11

Other Questions
researchers have found that the more attached you are to an area, the more likely you are to signal your "ownership" by adorning the area with if glucagon binds to surface receptors on liver cells to send an intracellular message for glycogen breakdown, this process is known as which mechanism of action? table 7.2 shows labor and the quantity of shoes produced by a firm. Given the information in the table below, at which point do diminishing marginal returns set in?Labor (Pairs of shoes)0 01 202 503 754 805 75a.Between the first and second units of labor.b.between the third and fourth units of labor.c.before the first unit of labor.d.between the second and third units of labor.e.between the fourth and fifth units of labor. Microloans for the long-term:Which of the following microloans would be most beneficial to women in the long term?A. a loan to help start up a rice farm in China that only employs women.B. a loan to help a toy factory in vietnam meet health and safety standardsC. a loan to help a toy factory in vietnam meet health and safety standardsD. a loan to help build a K-12 school for girls in rural PakistanE.. a loan to help single women in somalia learn how to fish so that they no longer have to rely on arranged marriages Find an equation of the tangent to the curve at the given point by both eliminating the parameter and without eliminating the parameter. x = 4 + in t, y = t^2 + 6, (4, 7) y = Read the definitions of more meaning techniques below, and collect examples from the poems provided. 1.The calm, Cool face of the riverAsked me for a kiss. 2.The passing springBirds mourn,Fishes weepWith tearful eyes. in the gawkers study, the percentage of those who conformed (looked up) was _____ when 15 people were looking up. Which one of the following is a criterion for identifying a primary government?A. it is a local government.B. it is fiscally dependent.C. it has a separately elected governing board.D. it has an appointed board of directors.E. it must prepare financial statements. Which character is the best choice to start a SQL injection attempt? A. Colon B. Semicolon C. Double quote. D. Single quote. What is 50% of half of 10? Several bolts on the propeller of a fanboat detach, resulting in an offset moment of 5 lb-ft. Determine the amplitude of bobbing of the boat when the fan rotates at 200 rpm, if the total weight of the boat and pas- sengers is 1000 lbs and the wet area projection is approximately 30 sq ft. What is the amplitude at 1000 rpm? consider the 5-bit generator g=10011, and suppose that d has the value 1010101010. what is the value of r? repeat the problem when d has the value 1001000101. show all your work a long, shallow body of seawater isolated from the ocean, that lies between the shoreline and a barrier island is called a ____. a. sand spit b. tombolo c. bay d. lagoon over the chronological course of the cordilleran orogeny, deformation moved _____________ the north american continent. can ssl handshake protocol provide user authentication? is the d2l user authentication part of the ssl protocol? why? where would extremophiles most likely make up the greatest percentage of microorganisms? an electron is placed in an electric field of 60.6 n/c to the left. what is the resulting force on the electron? a.2.64 1021 n right b.9.70 1018 n left c.2.64 1021 n left d.9.70 1018 n right Any act that is labeled as such by those in authority, is prohibited by law, and is punishable by the government is called a crime. Please select the best answer from the choices provided T F. identify the anesthetic agent that can be used for induction, maintenance, and mac that produces very little respiratory and cardiovascular depression and increases blood pressure. Select the correct answer from each drop-down menu. Fiona is writing an article on children. Help her complete the sentences. Child abuse may occur due to the nature of a parent or caregiver. Most often, child neglect occurs due to a interest in children. Reset Next