What is inequality?
In Algebra, inequality shows the relation between two expressions using the inequality symbol.
The graph shows the equation y<x^2+1 is attached
Learn more about Graph solution here:
https://brainly.com/question/21981889
#SPJ4
The graph at option 1 shows the given inequality y < x² + 1. The domain and range of the given inequality is {x: x ∈ (-∞, ∞)} and {y: y ∈ [1, ∞)}.
How to graph an inequality?The steps to graph an inequality equation are:
Solve for the variable y in the given equationGraph the boundary line for the inequalityShade the region that satisfies the inequality.Calculation:The given inequality is y < x² + 1
Finding points to graph the boundary line by taking y = x² + 1:
When x = -2,
y = (-2)² + 1 = 4 + 1 = 5
⇒ (-2, 5)
When x = -1,
y = (-1)² + 1 = 2
⇒ (-1, 2)
When x = 0,
y = (0)² + 1 = 1
⇒ (0, 1)
When x = 1,
y = (1)² + 1 = 2
⇒ (1, 2)
When x = 2,
y = (2)² + 1 = 5
⇒ (2, 5)
Plotting these points in the graph forms an upward-facing parabola.
So, all the points above the vertex of the parabola satisfy the given inequality. Thus, that part is shaded.
From this, the graph at option 1 is the required graph for the inequality y < x² + 1. The boundary line is dashed since the inequality symbol is " < ".
Learn more about graphing inequalities here:
https://brainly.com/question/371134
#SPJ1
( will give brainlyest)
A firework is launched from the ground at a speed of 160 feet per second. It’s height after t seconds is given by the polynomial -16t+160t. What is the height of the firework after 4 seconds?
Answer: 384 feet
Step-by-step explanation:
We will simplify and solve -16t² + 160t when t is equal to 4.
-16t² + 160t
-16(4)² + 160(4)
384 feet
Answer:
Step-by-step explanation:
**Note: The polynomial in question is -16t² + 160t, as clarified in the discussion under the question.**
Since there is a polynomial to find the height given a certain time, the height is a function of time.
This function would be h(t) = -16t² + 160t, so plugging in 4 for t would give the height.
[tex]h(4) = -16(4)^2+160(4)[/tex]
[tex]-16(16)+160(4)[/tex] [Squaring 4]
[tex]-256 + 640[/tex] [Multiplying]
[tex]384[/tex] [Combining both terms]
Hence, the height of the firework after 4 seconds is 384 feet.
3) A normal distribution has a mean of 75 and a standard deviation of 15. Determine the z-score for the data value of 85.
Step-by-step explanation:
z = (specific score - mean) / standard deviation
in our case
z = (85 - 75)/15 = 10/15 = 2/3 = 0.666666... ≈ 0.67
as z-tables usually round the z-score to hundredths.
The z-score for the data value of 85 is 0.67.
How to Calculate Z-Score?A Z-score is a metric that quantifies how closely a value relates to the mean of a set of values. Standard deviations from the mean are used to measure Z-score. A Z-score of zero means the data point's score is the same as the mean score. A value that is one standard deviation from the mean would have a Z-score of 1.0. Z-scores can be either positive or negative, with a positive number signifying a score above the mean and a negative value signifying a score below the mean.
To find the z-score, you simply need to apply the following formula:
z = (x - μ) / σ
μ=75
σ=15
x=85
z =85-75/15
z=10/15
=2/3
=0,66666....=0.67
Therefore, the z-score for the data value of 85 is 0.67.
To learn more about z-score, refer to:
https://brainly.com/question/25638875
#SPJ9
James and Simon have a reading assignment to complete. James has read r
rr pages, and Simon has read 75 pages. Together they have read a total of 200 pages. Select the equation that matches this situation.
Choose 1 answer:
Answer:
Step-by-step explanation:
125 I think
What is the area of parallelogram ABCD?
A. 12 units²
B. 30 units²
C. 24 units²
D. 55 units²
Answer:
C, 24 units^2
Step-by-step explanation:
The formula for area of a parallelogram is base times height.
The height of the parallelogram is 4 units
The base of the parallelogram is 6 units
4 times 6 is 24
Hope this helps:)
Answer:
C. 24 units²
Step-by-step explanation:
To calculate the area of a parallelogram we use the following formula:
A = B*h (B: base, h: height)
The base of the parallelogram is 6 units and the height is 4 units
4*6 = 24 units but, the area is presented in square units so the answer is 24 units²
Given the right triangle below, for the Pythagorean theorem, in which a 2 + b 2 = c 2, which side would represent the side "c." Hint: look at this triangle and the names of the angles.
Answer:
line segment AC (hypotenuse)
Step-by-step explanation:
The Pythagorean Theorem states that the sum of squares of the base/height of the triangle will equal the hypotenuse squared which is what c is equal to. So the c would represent the hypotenuse which is the side from the points A to C in the diagram.
Please help quickly I need the answer now please you’ll be brainleist
Answer:
B
Step-by-step explanation:
See the attached image.
What is the slope of the line containing (-3, 1) and (1, -2)?
[tex]\textbf{Heya !}[/tex]
use the slope-formula:-
[tex]\sf{\cfrac{y2-y1}{x2-x1}}[/tex]
put-in the values
[tex]\sf{\cfrac{-2-1}{1-(-3)}}[/tex]
[tex]\sf{\cfrac{-3}{1+3}}[/tex]
[tex]\sf{\cfrac{-3}{4}[/tex]
[tex]\sf{-\cfrac{3}{4}}[/tex]
`hope it's helpful to u ~
uan recently hired a roofer to do some necessary work. On the final bill, Juan was charged a total of $1131.5. $450 was listed for parts and the rest for labor. If the hourly rate for labor was $47, how many hours of labor was needed to complete the job?
Based on the total cost that Juan incurred to hire the roofer including the charge for parts and labor, the number of hours that was needed to complete the job was 14.50 hours.
How many hours did the roofer use?The first thing to do is to find out the amount that went to labor:
= Final bill - cost of materials
= 1,131.5 - 450
= $681.50
Now that you have the cost of labor, you can find out the number of labor hours that were used based on the hourly rate:
= Cost of labor / Hourly rate
Solving gives:
= 681.50 / 47
= 14.5 hours
In conclusion, the number of labor hours that the roofer used to complete the work, based on the total amount charged to Juan is 14.50 hours.
Find out more on job cost per hour at https://brainly.com/question/3726490.
#SPJ1
A pattern has 77 yellow triangles to every 33 green triangles. What is the ratios of green triangles to yellow triangles?
11. What is the y-intercept of a line that passes through the point (5,17)
and has a slope of 4?
1. 17
2. 11
3. -3
4. 46
5. 2
[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]
y - intercept = -3[tex]\textsf{ \underline{\underline{Steps to solve the problem} }:}[/tex]
Equation of straight line in point - slope form :
[tex]\qquad❖ \: \sf \:y - y1 = m(x - x1)[/tex]
( m = slope = 4, point (5 , 17) )
[tex] \qquad◈ \: \: \sf \: y - 17 = 4(x - 5)[/tex]
[tex] \qquad◈ \: \: \sf \: y - 17= 4x - 20[/tex]
[tex] \qquad◈ \: \: \sf \: y = 4x - 20 + 17[/tex]
[tex] \qquad◈ \: \: \sf \: y = 4x - 3[/tex]
Now, it's the form of line in slope - intercept form, ( slope = coefficient of x = 4 and y - intercept = -3 )
[tex] \qquad \large \sf {Conclusion} : [/tex]
[tex] \qquad◈ \: \: \sf \: y \: \: int = - 3[/tex]
There are 6 fifth grade classrooms that share 7 packs of paper. How much paper should each classroom get?
Answer:1.166 reams of paper.
Step-by-step explanation:
Just use simple division and divide 7/6.
Each classroom will get [tex]\dfrac{7}{6}[/tex] paper when there are 6 fifth grade classrooms that share 7 packs of paper.
A fraction is defined as a part of a whole. The upper part of the fraction is called the numerator, and the lower part is called the denominator.
Given that:
Number of fifth grade classrooms = 6
Number of packs of paper = 7
The number of paper each classroom get in fractions can be obtained by dividing the number of packs of paper by the number of fifth grade classrooms.
Each classroom get = [tex]\dfrac{Number \ of \ packs \ of \ paper}{ \ Number \ of \ fifth \ grade \ classrooms}[/tex]
Each classroom get = [tex]\dfrac{7}{6}[/tex]
Each classroom will get [tex]\dfrac{7}{6}[/tex] paper.
Learn more about fractions here:
https://brainly.com/question/10354322
#SPJ3
Find the distance between the pair of points: (-3,-6) and (1,2).
d² = (y2 - y1)² + (x2 - x1)²
..............
State the transformations being applied to each quadratic function.
a) y = -1/2(x+2)^2+4
b) y= -(x-1)^2-2
c) y=(4x)^2
d) y= 4x^2
The function transformations are:
The function (a) y = -1/2(x + 2)^2 + 4 is translated to the left by 2 units, reflected across the x-axis, compressed vertically by a factor of 1/2 and translated up by 4 unitsThe function (b) y = -(x - 1)^2 - 2 is translated right by 1 unit, reflected across the x-axis, and translated down by 2 unitsThe function (c) y = (4x)^2 is stretched horizontally by a factor of 1/4The function (d) y = 4x^2 is stretched vertically by a factor of 4What are transformations?Transformations involve translating, reflecting, rotating and dilating a function across the coordinate plane
How to determine the transformations?The parent function of a quadratic function is represented as:
y = x^2
When the function is stretched horizontally by a factor of k, where k is between 0 and 1, we have:
y = (x/k)^2
Assume k = 1/4. we have:
y = (4x)^2
This means that the function (c) y = (4x)^2 is stretched horizontally by a factor of 1/4
When the function is stretched vertically by a factor of k, where k is greater than 1, we have:
y = k(x)^2
Assume k = 4. we have:
y = 4x^2
This means that the function (d) y = 4x^2 is stretched vertically by a factor of 4
Translating the function left is represented as:
y = (x + k)^2
Assume k = 2. we have:
y = (x + 2)^2
Reflecting the function across the x-axis is represented as
y = -(x + 2)^2
When the function is compressed vertically by a factor of k, where k is between 0 and 1, we have:
y = -k(x + 2)^2
Assume k = 1/2. we have:
y = -1/2(x + 2)^2
Translating the function up is represented as:
y = -1/2(x + 2)^2 + k
Assume k = 4. we have:
y = -1/2(x + 2)^2 + 4
Hence, the function (a) y = -1/2(x + 2)^2 + 4 is translated to the left by 2 units, reflected across the x-axis, compressed vertically by a factor of 1/2 and translated up by 4 units
Translating the function right is represented as:
y = (x - k)^2
Assume k = 1. we have:
y = (x - 1)^2
Reflecting the function across the x-axis is represented as
y = -(x - 1)^2
Translating the function down is represented as:
y = -(x - 1)^2 - k
Assume k = 2. we have:
y = -(x - 1)^2 - 2
Hence, the function (b) y = -(x - 1)^2 - 2 is translated right by 1 unit, reflected across the x-axis, and translated down by 2 units
Read more about function transformation at:
https://brainly.com/question/1548871
#SPJ1
15 POINTS!!!! PLS HELP LOOK AT PIC
Answer:
A
Step-by-step explanation:
The solutions of a quadratic function will always be the x intercepts. Thus, if there are two solutions, there are two x intercepts.
A bookstore sells books for $2, $3, $5, and $10. Let random variable X = "amount of
money for one book."
Look at the relative-frequency table below representing the amount of money spent on
one item and the relative frequencies with which customers purchase them
If the expected amount of money spent by a customer is $3.23 what is the standard deviation?
The value of the standard deviation is σ = 2.20. Using probability distribution, the required standard deviation is calculated.
How to calculate the standard deviation?The formula for the standard deviation of the given probability distribution is
σ = √∑([tex]x_i^2[/tex] × [tex]P(X_i)[/tex]) - μₓ²
Where the mean μₓ = ∑[[tex]x_i[/tex] × [tex]P(X_i)[/tex]]
Calculation:It is given that,
x: $2, $3, $5, $10
P(X=x): 0.55, 0.26, 0.11, 0.08
Step 1: Calculating the mean:
we have μₓ = ∑[[tex]x_i[/tex] × [tex]P(X_i)[/tex]]
⇒ μₓ = 2 × 0.55 + 3 × 0.26 + 5 × 0.11 + 10 × 0.08
∴ μₓ = 3.23
Step 2: Calculating the standard deviation:
x: 2, 3, 5, 10
x²: 4, 9, 25, 100
P(X=x): 0.55, 0.26, 0.11, 0.08
([tex]x_i^2[/tex]) × [tex]P(X_i)[/tex]: 4 × 0.55 = 2.2; 9 × 0.26 = 2.34; 25 × 0.11 = 2.75; 100 × 0.08 =8
∑[([tex]x_i^2[/tex]) × [tex]P(X_i)[/tex]]: 2.2 + 2.34 + 2.75 + 8 = 15.29
Therefore,
The standard deviation, σ = √∑([tex]x_i^2[/tex] × [tex]P(X_i)[/tex]) - μₓ²
⇒ σ = [tex]\sqrt{15.29-(3.23)^2}[/tex]
= [tex]\sqrt{15.29-10.43}[/tex]
∴ σ = 2.20
Learn more about the probability distribution here:
https://brainly.com/question/18804692
#SPJ1
How many miles is it across the united states from the east coast to the west coast.
The thousand of miles across the United states from the east coast to the west coast.
In order to find the number of miles across the United states from the east coast to the west coast.
Hence, the thousand of miles across the United states from the east coast to the west coast.
Learn more about miles here
https://brainly.com/question/766716
#SPJ4
You are in a hot air balloon looking down at two ponds. Pond A which is in front of your balloon, is at an angle of depression that is your birth month (October), in degrees. (October = 10 degrees). Pond B, which is behind the balloon, is at angle of depression that is your Birth Day in degrees. (October 8 = 8 degrees). The balloon is 875 m in the air.
a. Draw and label a diagram
b. Find the distance from the hot air balloon to both Pond A and B
c. FInd the distance between the two ponds.
a. See attachment for the labelled diagram
b. Using the sine ratio, distance from the hot air to pond A is 5,038.9 m, while distance from the hot air to pond B is 6,287.1 m.
c. Distance between the two ponds is 1,263.5 m.
What is the Sine and Tangent Ratios?Sine ratio, is: sin ∅ = opposite side/hypotenuse length
Tangent ratio is: tan ∅ = opposite side/adjacent length.
a. The diagram with the appropriate labels is shown in the image attached below.
b. Use the sine ratio to find the distance from the hot air to pond A (CA) and to pond B (CB):
CA = hypotenuse
∅ = 10°
Opposite = 875 m
sin 10 = 875/CA
CA = 875/sin 10
CA ≈ 5,038.9 m (distance from the hot air to pond A)
CB = hypotenuse
∅ = 8°
Opposite = 875 m
sin 8 = 875/CB
CB = 875/sin 8
CB ≈ 6,287.1 m (distance from the hot air to pond B)
c. Distance between the two ponds, BA = BD + DA.
Apply the tangent ratio to find BD and DA
tan 8 = 875/BD
BD = 875/tan 8
BD = 6,225.9 m
tan 10 = 875/DA
DA = 875/tan 10
DA = 4,962.4 m
Distance between the two ponds = 6,225.9 - 4,962.4 = 1,263.5 m.
Learn more about the sine and tangent ratios on:
https://brainly.com/question/24137232
#SPJ1
The graph of the function f(x)=x2+12 is shown which stamen te describe the graph Check all that apply
The horizontal viewing angle is the angle subtended by a straight line from
each side of the screen to the seating position.
THX
THX Ltd., is a company founded in 1983 by George Lucas that develops
audio/visual reproduction standards for movie theaters. According to THX,
the viewing angle in a theater should be no less than 26 degrees and the best
viewing angle seems to be around 45-50 degrees and towards the center.
Suppose seat G11 has a horizontal viewing angle of 45°. This would be considered the best seat in the theater.
3. What is the measure of the arc the screen subtends?
The measure of the arc is given as π/2. See the explanation below.
What is an arc?An "arc" is a curve that connects two points in mathematics.
It can also be depicted as a section of a circle. It is essentially a portion of a circle's circumference. An arc is a kind of curve.
What is the calculation for the above solution?Note that the viewing angle is 45°.
Thus, the center angle is:
45 X 2 = 90°
Measure of the arc therefore is:
= (π/180°) x 90
= π/2
Learn more about arcs at:
https://brainly.com/question/2005046
#SPJ1
The likelihood that a patient with a heart attack dies of the attack is 0.04 (i.e., 4 of 100 die of the attack). Suppose we have 50 patients who suffer a heart attack. What is the probability that all will survive
The probability solved by binomial distribution that all will survive is 0.8154.
What is Binomial distribution?When each trial has the same probability of achieving a given value, the number of trials or observations is summarized using the binomial distribution. The likelihood of observing a specific number of successful outcomes in a specific number of trials is determined by the binomial distribution.
Computation of probability of all survived people from heart attack;
A heart attack patient has a 0.04 percent chance of dying from the attack (i.e., 4 of 100 die of the attack).
What is the likelihood that each of the five patients who experience a heart attack will survive?
We'll refer to a victory in this scenario as a heart attack (p = 0.04). In other words, we are interested in the likelihood that none of our n=5 patients will die (0 successes).
Each attack has a chance of being fatal or not, with a probability of 4 percent for all patients, and each patient's result is independent.
Assume for the purposes of this example that the five individuals being examined are unrelated, of the same age, and free of any concomitant disorders.
By binomial distribution,
[tex]\begin{gathered}P(0 \text { successes })=\frac{5 !}{0 !(5-0) !} 0.04^{0}(1-0.04)^{5-0} \\P(0 \text { successes })=\frac{5 !}{5 !}(1)(0.96)^{5}=(1)(1)(0.8154)=0.8154\end{gathered}[/tex]
Therefore, with a 4 % chance that anyone will die, there is an 81.54% chance that every patient will survive the onslaught. The outcomes in this example could be 0, 1, 2, 3, 4 or 5 successes (fatalities).
To know more about Binomial Distribution, here
https://brainly.com/question/27794898
#SPJ4
URGENT WILL GIVE BRAINLIEST
Answer:
626.7 [tex]cm^{2}[/tex]
Step-by-step explanation:
Consider the figure as a circle with radius 7.5 and a rectangle with width 30 and length 15.
CIRCLE
A = pi*r*r = pi*7.5*7.5 = 56.25pi =176.7
RECTANGLE
A = l*w = 15*30 = 450
176.7 + 450 = 626.7 [tex]cm^{2}[/tex]
Answer: 626.7cm^2
Step-by-step explanation:
30 * 15 = 450
area of circle = πr^2
r = 15/2 = 7.5
[tex]7.5^2=56.25*pi=176.7[/tex]
450+176.7 = 626.7
I need help on this please!
Answer:
Step-by-step explanation:
Part A:
CIRCLE A : Circumference is (pi)(diameter) so if they give you the circumference (21.98), divide it by 7 which gives you 3.14.
CIRCLE B: 18.84/6 = 3.14
Part B:
CIRCLE A: Area is (pi)(radius^2) so if they give you the area (38.465), divide it by radius^2 (7/2 = 3.5^2 = 12.25) = 3.14
CIRCLE B: 28.26/(3^2) = 3.14
Part C:
The value of pi stays the same for circle A and B.
Hope this helps :)
What is the mass percent of cashews in a 10. 0g mixed nut sample if the cashews are 0. 87g?
Answer:
0.87%
Step-by-step explanation:
→ Divide 0.87 by 10
0.87 ÷ 100 = 0.0087
→ Multiply answer by 100
0.0087 × 100 = 0.87
Calculate the total amount in an investment account if $2800 was invested at a simple interest rate of
5.5% for 18 months.
a. $3034.15
b. $3031.00
Trinh invected $2400.st.0866
c. $7340.11
d.
$5544.00
The total amount in the investment account is $3031.00
How to determine the total amount?The given parameters are
Principal, P = $2800
Rate, r = 5.5%
Time = 18 months i.e. 1.5 years
The amount is then calculated as:
A = P + PRT
This gives
A = 2800 + 2800 * 5.5% * 1.5
Evaluate
A = 3031
Hence, the total amount in the investment account is $3031.00
Read more about simple interest at:
https://brainly.com/question/25845758
#SPJ1
22 A circle passes through the points
P(3, 0) and Q(0, 5). Its centre lies on
the line y = x + 2.
(i) Find the equation of the perpendicular bisector of PQ.
(ii) Hence show that the coordinates of the centre of the circle are (-1, 1).
(iii) Find the equation of the circle.
A second circle with equation
2x² + y² + ax + by - 14 = 0 has the
same centre as the first circle.
(iv) Write down the value of a and of b.
(v) Show that the second circle lies
inside the first circle.
The equation of the first circle is (x + 1)^2 + (y - 1)^2 = r^2 and the equation of the second circle is (x + 1)² + (y - 1)² = 16
The equation of the perpendicular bisectorThe points are given as:
P(3, 0) and Q(0, 5)
The midpoint of PQ is
Midpoint = 0.5(3 + 0, 0 + 5)
Midpoint = (1.5, 2.5)
Calculate the slope of PQ
m = (y2 - y1)/(x2 - x1)
m = (5 - 0)/(0 - 3)
m = -5/3
A line perpendicular to PQ would have a slope (n) of
n = -1/m
This gives
n = -1/(-5/3)
n = 0.6
The equation is then calculated as:
y = n(x - x1) + y1
Where
(x1, y1) = (1.5, 2.5)
So, we have:
y = 0.6(x - 1.5) + 2.5
y = 0.6x - 0.9 + 2.5
Evaluate the sum
y = 0.6x + 1.6
Hence, the equation of the perpendicular bisector of PQ is y = 0.6x + 1.6
The center of the circleWe have:
y = x + 2
Substitute y = x + 2 in y = 0.6x + 1.6
x + 2 = 0.6x + 1.6
Evaluate the like terms
0.4x = -0.4
Divide
x = -1
Substitute x = -1 in y = x + 2
y = -1 + 2
y = 1
Hence, the center of the circle is (-1, 1)
The circle equationWe have:
Center, (a, b) = (-1, 1)
Point, (x, y) = (0, 5) and (3, 0)
A circle equation is represented as:
(x - a)^2 + (y - b)^2 = r^2
Where r represents the radius.
Substitute (a, b) = (-1, 1) in (x - a)^2 + (y - b)^2 = r^2
(x + 1)^2 + (y - 1)^2 = r^2
Substitute (x, y) = (0, 5) in (x + 1)^2 + (y - 1)^2 = r^2
(0 + 1)^2 + (5 - 1)^2 = r^2
This gives
r^2 = 17
Substitute r^2 = 17 in (x + 1)^2 + (y - 1)^2 = r^2
(x + 1)^2 + (y - 1)^2 = r^2
Hence, the circle equation is (x + 1)^2 + (y - 1)^2 = r^2
The value of a and bThe equation of the second circle is
2x² + y² + ax + by - 14 = 0
Rewrite as:
2x² + ax + y² + by = 14
For x and y, we use the following assumptions
2x² + ax = 0 and y² + by = 0
Divide through by 2
x² + 0.5ax = 0 and y² + by = 0
Take the coefficients of x and y
k = 0.5a k = b
Divide by 2
k/2 = 0.25a k/2 = 0.5b
Square both sides
(k/2)² = 0.0625a² (k/2)² = 0.25b²
Add the above to both sides of the equations
x² + 0.5ax +0.0625a² = 0.0625a² and y² + by + 0.25b² = 0.25b²
Express as perfect squares
(x + 0.25a)² = 0.0625a² and (y + 0.5b)² = 0.25b²
Add both equations
(x + 0.25a)² + (y + 0.5b)² = 0.0625a² + 0.25b²
So, we have:
2x² + ax + y² + by = 14 becomes
(x + 0.25a)² + (y + 0.5b)² = 0.0625a² + 0.25b²+ 14
Comparing the above equation and (x + 1)^2 + (y - 1)^2 = r^2, we have:
0.25a = 1 and 0.5b = -1
Solve for a
a = 4 and b = -2
This means that the value of a is 4 and b is -2
Show that the second circle is in the firstWe have:
a = 4 and b = -2
Substitute these values in (x + 0.25a)² + (y + 0.5b)² = 0.0625a² + 0.25b²+ 14
This gives
(x + 0.25*4)² + (y - 0.5*2)² = 0.0625*4² + 0.25*(-2)²+ 14
(x + 1)² + (y - 1)² = 16
The equation of the first circle is
(x + 1)² + (y - 1)² = 17
The radii of the first and the second circles are
R = √17
r = √16
√17 is greater than √16
Since they have the same center, and the radius of the first circle exceeds the radius of the second circle, then the second circle lies inside the first circle.
Read more about circle equation at:
https://brainly.com/question/10618691
#SPJ1
which whole number is equal to the fraction 42/6
Answer:
7.
Step-by-step explanation:
Think of 42/6 as a division question.
42 ÷ 6.
The answer to this equation is 7.
A 12 foot ladder is leaning against a building. If the bottom of the ladder is sliding along the pavement directly away from the building at 2 feet/second, how fast is the top of the ladder moving down when the foot of the ladder is 3 feet from the wall
Using Pythagoras theorem, the top of the ladder moving down when the foot of the ladder is 3 feet from the wall is of -0.518 feet/sec.
Let distance from the wall to the foot of the ladder is 'x' feet and the height of the top of the ladder is 'y' feet.
Pythagoras theorem, [tex]x^{2} + y^{2} = (12)^{2}[/tex] --->(1)
Given,[tex]\frac{dx}{dt}= 2feet/second[/tex] at x=3
Put x=3 in Pythagoras theorem equation (1)
[tex](3)^{2} + y^{2} = 144[/tex]
[tex]y^{2} = 144 - 9[/tex]
[tex]y^{2}[/tex] = 135
y = 11.61
Derive equation (1) w.r.t to 't'
[tex]2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0[/tex] ---->(2)
substitute the value of 'x', 'dx/dt' and 'y' in equation (2), we get the fast of the top of the ladder moving down when the foot of the ladder is 3 feet from the wall
[tex]2(3)(2) + 2 (11.61)\frac{dy}{dt} = 0[/tex]
12 + 23.22 [tex]\frac{dy}{dt}[/tex] = 0
[tex]\frac{dy}{dt}= \frac{-12}{23.22}[/tex]
[tex]\frac{dy}{dt} = -0.518[/tex]
Hence, using Pythagoras theorem the top of the ladder moving down when the foot of the ladder is 3 feet from the wall is of -0.518 feet/sec.
Learn more about Pythagoras theorem here
https://brainly.com/question/21511305
#SPJ4
Solve for X in the diagram below
Step-by-step explanation:
the sum of all angles around a single point on one side of a line must be 180°.
because that line can be seen as the extension of the diameter of a circle, and the point would be the center of that circle. so, one side of the line represents a half-circle, which stands for 180°.
so we have
180 = 40 + 40 + (2x + 30) = 80 + 2x + 30 = 110 + 2x
70 = 2x
x = 35
If a polynomial f(x) is divided by (x+a) and leaves the reminder is a and b are constants then
f(-a) is the remainder when f(x) is divided by (x+a). This can be obtained by remainder theorem for polynomials.
What is the required remainder?Given that f(x) is divided by (x+a) and leaves a reminder
Using the remainder theorem for polynomials we get,
f(x) = (x+a)·g(x) + r, where g(x) is the quotient and r is the remainder.
Put x = -a, then
f(-a) = (-a+a)·g(-a) + r
f(-a) = (0)·g(x) + r
f(-a) = r
f(-a) is the remainder.
Hence f(-a) is the remainder when f(x) is divided by (x+a).
Learn more about remainder theorem here:
brainly.com/question/1550437
#SPJ4
Which expression is equivalent to (m-4/m+4)/(m+2)?
A) m-4/(m+4)(m+2)
B) (m+4)(m+2)/m-4
C) (m-4)(m+2)/m+4
D) m+4/(m-4)(m+2)
Hello,
[tex] \frac{ \frac{m - 4}{m + 4} }{m + 2} = \frac{ \frac{m - 4}{m + 4} }{ \frac{m + 2}{1} } = \frac{m - 4}{m + 4} \times \frac{1}{m + 2} = \frac{m - 4}{(m + 4)(m + 2)} [/tex]