Which of the following is NOT a property of gases?


Which of the following is NOT a property of gases?

a. Constant shape
b. Fill their container
c. Have mass
d. Easily compressed

Answers

Answer 1

Answer:

a. Constant shape


Related Questions

A metal (FW 241.5 g/mol) crystallizes into a face-centered cubic unit cell and has a radius of 1.92 Angstrom. What is the density of this metal in g/cm3

Answers

This  problem provides the molar mass and radius of a metal that has an FCC unit cell and the density is required.

Firstly, we begin with the formula that relates the aforementioned variables and also includes the Avogadro's number and the volume of the unit cell:

[tex]\rho=\frac{Z*M}{V*N_A}[/tex]

Whereas Z stands for the number of atoms in the unit cell, M the molar mass, V the volume and NA the Avogadro's number. Next, since FFC is able to hold 4 atoms and M and NA are given. Next, we calculate the volume of the atom in the unit given the radius in meters:

[tex]V=a^3=(2*1.92x10^-10m*\sqrt{2} )^3=1.60x10^{-28}m^3/atom[/tex]

And finally the required density in g/cm³:

[tex]\rho=\frac{4*241.5g/mol}{1.60x10^{-28}m^3/atom*6.022x10^{23}atom/mol} \\\\\rho=10025739g/m^3=10.03 g/cm^3[/tex]

Learn more:

https://brainly.com/question/12977980https://brainly.com/question/13110055

If such an ion is negatively charged and includes one or more oxygen atoms

Answers

Answer:

atom

Explanation:

The sodium atom has a single valence electron that it can easily lose. (If the sodium atom loses its valence electron, it achieves the stable electron configuration of neon.) The chlorine atom has seven valence electrons and can easily gain one electron.

the solubility of nitrogen gas is 1.90 mL/dL of blood at 1.00 atm. what is the solubility of nitrogen gas in a deepsea divers blood at a depth of 200 feet and pressure of 7.00 atm

Answers

The solubility of nitrogen gas in water is 1.90 mL/dL at 1.00 atm and 13.3 mL/dL at 7.00 atm.

We want to relate the solubility of a gas with its partial pressure.

We can do so using Henry's law.

What does Henry's law state?

Henry's law states that the amount of dissolved gas in a liquid is proportional to its partial pressure above the liquid.

C = k × P

where,

C is the concentration of a dissolved gas. k is the Henry's Law constant. P partial pressure of the gas.

The solubility of nitrogen gas is 1.90 mL/dL of blood at 1.00 atm.

Since the solvent is basically water, we can understand that the concentration of nitrogen gas is 1.90 mL/dL at 1.00 atm.

We can use this information to calculate Henry's Law constant.

k = C/P = (1.90 mL/dL)/1.00 atm = 1.90 mL/dL.atm

We want to calculate the solubility of nitrogen gas at a pressure of 7.00 atm.

We will use Henry's law.

C = k × P = (1.90 mL/dL.atm) × 7.00 atm = 13.3 mL/dL

The solubility of nitrogen gas in water is 1.90 mL/dL at 1.00 atm and 13.3 mL/dL at 7.00 atm.

Learn more about solubility here: https://brainly.com/question/11963573

please i need this now ill give you brainlest ​

Answers

Answer: The following information should be included;

What is the difference between the greenhouse effect, climate change and global warming?

What proof do we have that climate change is happening?

Why is it happening?

You have three gases in a mixture where P1= 100 kPa, P2 = 50 kPa, and P3 = 75
kPa. What is the total pressure of the gas mixture?

A. 225 kPa
B. 25 kPa
C. 75 kPa
D. None of the above

Answers

Answer:

Ptotal=P1+P2+… +Pn. + P nExplanation:

its c

A chemist heats the block of copper as shown in the interactive, then places the metal sample in a cup of oil at 25.00 °C instead of a cup of water. The temperature of the oil increases to 27.33 °C . Calculate the mass of oil in the cup. The specific heat of copper is 0.387 J/g⋅°C and the specific heat of oil is 1.74 J/g⋅°C .

Answers

When the oil is added to the heated copper, the energy in the system is

conserved.

The mass of the oil in the cup, is approximately 64.73 grams.

Reasons:

The question parameters are;

Temperature of the oil in the cup = 25.00°C

Final temperature of the oil and copper, T₂ = 27.33 °C

Specific heat of copper, c₂ = 0.387 J/(g·°C)

Specific heat capacity of oil, c₁ = 1.74 J/(g·°C)

Required:

The mass of oil in the cup.

Solution:

The mass of the copper, m₂ = 17.920 g

Temperature of copper after heating, T₂ = 65.17°C

Temperature of the copper after being placed in the cup of oil, T₂ = 27.33°C

Heat lost by copper = Heat gained by the oil

m₂·c₂·(T₂ - T₃) = m₁·c₁·(T₃ - T₁)

Therefore, we get;

17.920 × 0.387 × (65.17 - 27.33) = m₁ × 1.74 × (27.33 - 25)

262.4219136 = 4.0542·m₁

m₁ ≈ 64.73

The mass of the oil in the cup, m₁ ≈ 64.73 g

Learn more here:

https://brainly.com/question/21406849

Possible part of the question obtained from a similar question online, are;

The mass of the copper, m₂ = 17.920 g

Temperature of copper after heating = 65.17°C

Find the mass of 1.220 moles of PH5.

Answers

Answer:

43.93642

Explanation:

Phosphorus P 30.973762 1 86.0061

Hydrogen H 1.00794 5 13.9939

I don't know physics, but I hope this helps :)

(I'm a seventh grader so don't judge if this is wrong please)

How can you include osmosis in animal cell

Answers

As you will remember animal cells have partially permeable cell membrane. This means that if they are placed in pure water because their cytoplasm is a stronger solution than the pure water, water will pass into the cells by osmosis. The cells will therefore swell up n biology, osmosis is the movement of molecules from a zone of high water potential to a zone of lower water potential through a semi-permeable membrane. The phenomenon of osmosis occurs at different concentrations of water potential in animal cells and plant cells..

What instruments are used to measure moleculars vibration , rotation and translation?

Answers

Answer:

you hear

Explanation:

beautiful hear can be wonderful day in your life so to be rotations is not a big deal

What is it called when you have hydrogen peroxide that just eventually turns into water

Answers

Answer:

chlorine

Explanation:

Answer:chlorine reacts with hydrogen peroxide

Explanation:

Calculate the number of molecules present in 11 moles of H2O.

Answers

Answer:

[tex]11 \times 6.022 \times {10}^{23} \\ = 66.242\times {10}^{23} \: of \: \\ water \: molecules[/tex]

There are two unknowns in this problem - the mass of potassium carbonates and the mass of sodium carbonate. Let's designate the grams of potassium carbonate as our first unknown (you may want to call it gKcarb, or x, some other variable name that makes sense to you) and the grams of sodium carbonate as our second unknown(you may want to call it gNacarb, or y, some other variable name that makes sense to you). Set up an equation for the sum of your two unknowns. Starting with 'unknown' grams of potassium carbonate, use stoichiometry to calculate the number of moles of nitric acid that would react with the potassium carbonate. Your answer will have a variable for your unknown grams of potassium carbonate in it. Starting with 'unknown' grams of sodium carbonate, use stoichiometry to calculate the number of moles of nitric acid that would react with the sodium carbonate. Your answer will have a variable for your unknown grams of sodium carbonate in it. Set up an equation for what you get if you add these two quantities.

Answers

This problem, is describing two scenarios, the first one, a reaction between potassium carbonate and nitric acid, and also this very same acid with sodium carbonate. In addition, it is asked to set up two equations whereby you can get the grams of nitric acid needed to react with the unknown grams of both carbonates.

In this case, we can start off by designating the unknown mass of potassium carbonate as X and that of sodium carbonate as Y, so that we will be able to provide a reliable answer. Next, we write the corresponding chemical equations that take place:

K2CO3 + 2HNO3 --> 2KNO3 + H2O + CO2

Na2CO3 + 2HNO3 --> 2NaNO3 + H2O + CO2

After that, we can set up the conversion by considering the following calcultion track:

g Carbonate --> mol Carbonate --> mol HNO3 --> g HNO3

The conversion from grams to moles involve the carbonates' molar mass and the conversion from moles of nitric acid to grams, its molar mass well. In addition, we need the 1:2 mole ratio of the carbonates to nitric acid that it is evidenced in the reaction.

Therefore, the resulting equations that can be set up are shown as follows:

[tex]X g K_2CO_3 *\frac{1mol K_2CO_3 }{138.2 gK_2CO_3 } \frac{2molHNO_3}{1molK_2CO_3 } *\frac{63.1gHNO_3}{1molHNO_3} \\\\Y g Na_2CO_3 *\frac{1mol K_2CO_3 }{105.99 gK_2CO_3 } \frac{2molHNO_3}{1molNa_2CO_3 } *\frac{63.1gHNO_3}{1molHNO_3}[/tex]

Learn more:

https://brainly.com/question/22889208https://brainly.com/question/24384921

2. Alex pulls on the handle of a claw hammer with a force of 15 N. If
the hammer has a mechanical advantage of 5.2, how much force
is exerted on the nail in the claw?

Answers

Answer:

78n

Explanation:

The output force exerted on the nail in the claw is equal to 78 N which has a mechanical advantage of 5.2.

What is the mechanical advantage?

The mechanical advantage can be demonstrated as the ratio of the output force to the Input force. The mechanical advantage of any machine can be expressed in the form of the ratio of the forces utilized to do the work.

The ratio of the resistance to the effort is said to be the actual mechanical advantage which will be less. The efficiency of a machine can be evaluated by equating the ratio of the output to its input.

Given, the input force = 15 N

The mechanical advantage of the hammer = 5.2

Mechanical advantage = Output force/ Input force

5.2 = Output/15

Output force = 15 ×5.2 = 78 N

Therefore, the force is exerted on the nail in the claw is equal to 78 N.

Learn more about the Mechanical advantage,  here:

brainly.com/question/16617083

#SPJ2

At 298 K, the reaction 2 HF (g) ⇌ H2 (g) + F2 (g) has an equilibrium constant Kc of 8.70x10-3. If the equlibrium concentrations of H2 and F2 gas are both 1.33x10-3 M, determine the initial concentration of HF gas assuming you only started with HF gas and no products initially.

Answers

This problem is describing the equilibrium whereby hydrofluoric acid decomposes to hydrogen and fluorine gases at 298 K whose equilibrium constant is 8.70x10⁻³, the equilibrium concentrations of all the reactants are both 1.33x10⁻³ M and asks for the initial concentration of hydrofluoric acid which turns out to be 2.86x10⁻³ M.

Then, we can write the following equilibrium expression for hydrofluoric acid once the change, [tex]x[/tex], has taken place:

[tex][HF]=[HF]_0-2x[/tex]

Now, since both products are 1.33x10⁻³ M we infer the reaction extent is also 1.33x10⁻³ M, and thus, we can calculate the equilibrium concentration of HF via the law of mass action (equilibrium expression):

[tex]8.70x10^{-3}=\frac{(1.33x10^{-3} M)^2}{[HF]} }[/tex]

[tex][HF]=\frac{(1.33x10^{-3} M)^2}{8.70x10^{-3}} }=2.03x10^{-4}M[/tex]

Finally, the initial concentration of HF is calculated as follows:

[tex][HF]_0=[HF]+2x=2.033x10^{-4}+2*(1.33x10^{-3})=2.86x10^{-3}M[/tex]

Learn more:

https://brainly.com/question/13043707https://brainly.com/question/16645766

Convert the heat of neutralization of acetic acid from -49,8 kj/mmol to calories per
millimole and ROUND TO ONE DECIMAL PLACE (1 cal = 4.184 J)
DO NOT INCLUDE UNITS

Answers

This question is providing the exothermic heat of neutralization of acetic acid in units of kilojoules per mollimole (-49,8 kj/mmol) and asks for the same value but in calories per millimole which results -11,902.5 cal/mmol.

In this case, according to the given problem, it turns out necessary to solve a two-factor conversion in order to convert the kilojoules to joules and finally to calories as shown below:

[tex]-49.8\frac{kJ}{mmol}*\frac{1000J}{1kJ}*\frac{1cal}{4.184J}[/tex]

Thus, we cancel out the kJ and J, to obtain the following result, rounded to one decimal place:

[tex]-11,902.5\frac{cal}{mmol}[/tex]

Learn more:

https://brainly.com/question/2731380https://brainly.com/question/2921187

Learning Task 2: Read each statement or question below carefully and fill in the blank(s) with the best answer by choosing the words inside the box. Write your answers in a separate sheet of paper. cation 1 -ide -ine nonmetals O ion ionic compound anion metals root name 1. Any atom or molecule with a net charge, either positive or negative, is known as en 2. An atom that gains one extra electron forms an with a 1- charge. 3. A positive ion, called a is produced when one or more electrons are lost from a neutral atom. 4. Unlike a cation, which is named for the parent atom, an anion is named by taking the of the atom and changing the ending. 5. The name of each anions is obtained by adding the suffix to the root of the atom name. 6. The always form positive ions. 7. on the other hand, form negative ions by gaining electrons. 8. It is very important to remember that a chemical compound must have a net charge of​

Answers

Body surface area is calculated a) in m2 from weight and height. b) from height. c) from weight. d) in meters from weight and height.

If an atom should form from its constituent particles,
(a) matter is lost and energy is taken in.
(b) matter is lost and energy is released. .
(c) matter is gained and energy is taken in.
(d) matter is gained and energy is released.

Answers

Answer:

(b) matter is lost and energy is released

Explanation:

When atoms are being formed from its constituent components it weighs less this is called mass defect so the answer would be (b) matter is lost and energy is released.

The elements chlorine and iodine have similar chemical properties
because they

Answers

Answer:

They are both halogens and have the same number of electrons on their outer shell.

Any element with 7 electrons in the outermost shell will have similar properties. Thus other elements in the same column of the periodic table as chlorine will have similar properties.

If you liked my answer, please mark me brainliest!!!

Why is the first one (A) correct?

Answers

Answer: yes it is correct

Explanation: the higher it is the cooler.

which two types of food are homogeneous mixtures
A. mustard
B. mayonnaise
C. tossed salad
D. trail mix

Answers


Answer: It’s most likely Mayonnaise and mustard.
Explanation: It’s definitely mayonnaise because it’s not possible to see the different substances and for mustard it depends on what type. Hope this helps. Good luck :)

what is the common name of hydrated calcium sulphate?​

Answers

Answer:

Gypsum

Explanation:

Calcium sulphate, is a naturally occurring calcium salt. It is commonly known in its dihydrate form, a white or colourless powder called gypsum.

HELP!! what are the usual products of combustion reactions?

Answers

Explanation:

Carbon dioxide and water

I hope it helps

Answer:

The usual products of combustion reactions are carbon dioxide and water.

Explanation:

Combustion reaction is when a substance reacts with oxygen gas, resulting in a release of energy in the form of light and heat. Combustion reactions must have oxygen (O2) as one of the reactants.

Using chemical equations, show how the triprotic acid H3PO4 ionizes in water. Phases are optional.

Ka1:

Ka2:

Ka3:

Answers

Explanation:

H3PO4 is a weak acid so it partially dissociates in water

Ka1

H3PO4 (aq) + H2O(l) <----> H2PO4-(aq) + H3O+ (aq)

Ka2

H2PO4- (aq) + H2O(l) <----> HPO4 2- (aq) + H3O+ (aq)

Ka3

HPO4 2- (aq) + H2O(l) < ---> PO4 3- (aq) + H3O+ (aq)

PLEASE HELP ME!!! When two atoms combine to form a compound, one atom pulls electrons from the other atom towards itself. The atom that pulls electrons is (reduced or oxidized). The atom whose electrons are being pulled is (reduced or oxidized)?

Answers

Answer:

The pulling atom is oxidized while the pulled atom is reduced. Grade 9 Chemistry

Explanation:


What would the empirical formula be for the molecular compound CoH904?

Answers

It would be the same thing if the Co does not have a number with it because it can’t reduce

What are the bond angles found in germanium disulfide ?

Answers

Answer:

Every germanium atom is tetrahedrally linked to four sulphur atoms, with an interatomic distance of 2.19A. The angle between the two sulphur bonds is 103°.

hope this helps

An interatomic distance of 2.19A exists between each germanium atom and the four sulphur atoms that are tetrahedrally connected to it. The two sulphur bonds form a 103° angle.

What is bond angle ?

A complex molecule's or ion's bond angle is the angle between the two bonds, or the angle between two orbitals that contain bonding electron pairs surrounding the central atom. It is determined using a spectroscopic approach and measured in degrees.

Any angle between two bonds that share an atom is known as a bond angle, and it is often measured in degrees. The distance along the straight line between the nuclei of two bound atoms is known as a bond distance.

Bond angles also have a role on a molecule's structure. The angles between neighboring lines that form bonds are known as bond angles. The difference between linear, trigonal planar, tetrahedral, trigonal-bipyramidal, and octahedral crystals may be determined by the bond angle.

Thus,  The two sulphur bonds form a 103° angle.

To learn more about bond angle, follow the link;

https://brainly.com/question/14089750

#SPJ2

The table below shows the dimensions of two colored cubes.


Dimensions of Cubes
Cube Side (cm) Mass
(g)
Yellow 3 135
Black 2 48

Answers

Answer: The correct answer is black because the product of its side and mass is lower.

Explanation: The density of a substance is defined as the amount of matter that can be stored in a given volume.

Hence, the black cube will be denser because the product of its side and mass is lower.

Answer: it was wrong on my test

Explanation:

literally dont believe them

Compound A is neutral and Compound B is acidic. Both are water-insoluble solids. A and B are dissolved in dichloromethane (DCM) and extracted with aqueous base. The layers are then separated. What must be done to obtain the compound in the aqueous layer

Answers

In order to extract the compound in the aqueous layer, a strong acid must be added to the system.

Liquid - Liquid extraction is a common method for obtaining substances that can partition between two layers. In this case, compound A is neutral and compound B is acidic.

When the both compounds are dissolved in dichloromethane and extracted using an aqueous base, the acid substance will form a salt in the aqueous layer. In order to extract the compound in the aqueous layer, a strong acid must be added to the system.

Learn more: https://brainly.com/question/865531

a material that is not a mixture; has the same properties all the way through

Answers

Answer:

Explanation:

The material that is not a mixture; it has the same properties all the way through is called a substance. Thus the material that is not a mixture; it has the same properties all the way through is called a substance.

ALL THE BEST :)

Which is true of protons and neutrons?
1. They have approximately the same mass and the same charge.
2) They have approximately the same mass but different charge.
by The have different mass and different charge.
O sette
4) They have different mass but the same charge.

Answers

Answer:

[tex]\blue{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}[/tex]

[tex]\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}[/tex]

Other Questions
Calculate the frequency of a wave with a speed of 250m/s and a wavelength of 50m.HELPPPPPPPPPPPPPPPPPPPPPPPP PLS use a point on the number line to represent a number ot whose absulute vaue is? At what holiday celebration do people perform a show in the costume of a long dragonA. Forbidden City festivalB. Dragon king celebrationC. Dragon boat festivalD. Spring festivalplease I need help PLS HELP WILL MARK BRAINLIEST! ANWSER FASTTT 40 points!!!!!!! How much force is needed to stop a 100-kg football player if she decelerates at 20 m/s2? 5 N 20 N 200 N 2000 N. Please help me with this question. I don't think I understand it. Quadratic functions graphing #15-19. Will pick brainliest answer, thank you :) What is the inverse of this function? f(x)=x7 how to solve this.im stuck in this question for 20 mins. Plzz answer A restaurant keeps eggs in a rack that has 5 layers each layer has 5 row with 5 eggs in each row Please anyone Im desperate Ancient civilizations developed along the coast of major Seas True or False The following accounts appear in the ledger of Monroe Entertainment Co. All accounts have normal balances.Accounts Payable $1,500 Fees Earned $3,600Accounts Receivable 1,800 Insurance Expense 1,300Prepaid Insurance 2,000 Land 3,000Cash 3,200 Wages Expense 1,400Drawing 1,200 Capital 8,800Total assets area. $10,000b. $9,800c. $9,700d. $8,000 what was the first thing that was mad in the history (2a+3) by (a+2) binomial multiplication this for SOLYB7749 am i bad freind??? Janelle came to bat 464 times in 131 games. At this rate, how many times should she expect to have at bat in a full season of 162 games? The process of exchange of goods or services from sellers to buyers is referred to as: A supply B. market C demand D. production The total change in the outdoor temperature over 6 hours was -21FWhat was the mean change in temperature per hour? F per hour which statement is true regarding the school circular respiration A. the reactants of circular respiration are similar with the reaction of photosynthesis B. the products of circular respiration are similar with the products photosynthesis C. the reactants of circular respiration are obtained from the products of photosynthesis D. circular respiration occurs on the and autotrophs photosynthesis occurs only in heterotrophs