Work done on a point mass A point mass m = 7 kg is moving in 2D under the influence of a constant force F = 2i-8j N. At time t = 0 s the mass has position vector ro = 7i - 8j m, while by time t =6 s it has moved to rf = 4i+3j m. How much work W does the force F do on the point mass between these two times? W = _____ J

Answers

Answer 1

-94 J is the work done (W) on the point mass between these two times.

To find the work done (W) on a point mass (m = 7 kg) between two times (t = 0 s and t = 6 s) under the influence of a constant force F = 2i - 8j N, we can use the formula:

W = F • Δr

where W is the work done, F is the force, and Δr is the change in position vector.

First, we need to find the change in position vector:

Δr = rf - ro = (4i + 3j) - (7i - 8j) = -3i + 11j

Now, we can find the dot product of F and Δr:

F • Δr = (2i - 8j) • (-3i + 11j) = 2(-3) + (-8)(11) = -6 - 88 = -94

Therefore, the work done (W) on the point mass between these two times is:

W = -94 J

More on work: https://brainly.com/question/12157281

#SPJ11


Related Questions

A snowboarder on a slope starts from rest and reaches a speed of 3.3 m/s after 7.7 s.a. What is the magnitude of the snowboarder's average acceleration?b How far does the snowboarder travel in this time?

Answers

The magnitude of the snowboarder's average acceleration is approximately 0.43 m/s². The snowboarder travels approximately 12.2 meters in this time.

a) The magnitude of the snowboarder's average acceleration, we can use the following equation:

average acceleration = (final velocity - initial velocity) / time

final velocity = 3.3 m/s (the speed reached by the snowboarder)

initial velocity = 0 m/s (since the snowboarder starts from rest)

time = 7.7 s

Plugging in these values, we get:

average acceleration = (3.3 m/s - 0 m/s) / 7.7 s ≈ 0.43 m/s²

So the magnitude of the snowboarder's average acceleration is approximately 0.43 m/s².

b) We can use the following kinematic equation , to find how far the snowboarder travels in this time .

distance = initial velocity x time + (1/2) x acceleration x time²

initial velocity = 0 m/s (since the snowboarder starts from rest)

time = 7.7 s

acceleration = 0.43 m/s² (the average acceleration calculated in part a)

Plugging in these values, we get:

distance = 0 m/s x 7.7 s + (1/2) x 0.43 m/s² x (7.7 s)² ≈ 12.2 m

So the snowboarder travels approximately 12.2 meters in this time.

To learn more about acceleration refer here:

https://brainly.com/question/30660316#

#SPJ11

What is the change in thermal energy of the system consisting of the two astronauts?

Answers

The change in thermal energy of the system consisting of the two astronauts depends on the amount of heat transfer and the work done during the process.

Thermal energy is the energy associated with the temperature of an object or system. The change in thermal energy of a system can be calculated using the first law of thermodynamics, which states that the change in thermal energy is equal to the amount of heat transfer minus the work done by or on the system.

In the case of the two astronauts, the change in thermal energy depends on the amount of heat transfer that occurs between the two astronauts and their environment, as well as any work done by or on the astronauts during the process. If the two astronauts are in a vacuum, there would be no heat transfer with their environment and the change in thermal energy would be determined solely by the work done.

However, if the astronauts are in an environment with a temperature different from their own, there would be heat transfer between the two, which would affect the change in thermal energy of the system.

Learn more about thermal energy here:

https://brainly.com/question/30819997

#SPJ11

How many wavelengths are present in the sound wave shown? 1 2 3 4.

Answers

There are a total of 3 wave lengths in the sound waves as wavelength of a sound wave is a fundamental characteristic that describes the physical properties of the wave.

Sound waves are the mechanical waves that propagate through a medium, such as air, water, or solids, by creating a series of compressions and rarefactions. These compressions and rarefactions result in the alternation of high-pressure and low-pressure regions in the medium, which our ears perceive as sound. The relationship between the wavelength and sound wave is governed by the speed of sound in the medium.

Learn more about wavelength here.

https://brainly.com/question/7143261

#SPJ12

Find the dot product of the vector F = 2.63 î + 4.28 ĵ – 5.92 Î N with d = – 2 î + 8 ſ + 2.7 Ř m.

Answers

The dot product of the vector F = 2.63 î + 4.28 ĵ – 5.92 Î N with d = – 2 î + 8 ſ + 2.7 Ř m is 12.28 N·m.

The dot product of two vectors A and B is defined as:

A · B = |A| |B| cosθ

where |A| and |B| are the magnitudes of vectors A and B, respectively, and θ is the angle between them.

To find the dot product of vector F = 2.63 î + 4.28 ĵ – 5.92 Î N with d = – 2 î + 8 ſ + 2.7 Ř m, we need to calculate the dot product of the corresponding components:

F · d = (2.63)(–2) + (4.28)(8) + (–5.92)(2.7)

F · d = –5.26 + 34.24 – 15.984

F · d = 12.28 N·m

Therefore, the dot product of F and d is 12.28 N·m.

To learn more about dot product refer here:

https://brainly.com/question/29097076#

#SPJ11

A glass window 0.45 cm thick measures 86cm by 36 cm.How much heat flows through this window per minute if the inside and outside temperatures differ by 17 degrees celcius?

Answers

The rate of heat flow through the window is approximately 56,896.2 joules per minute.When there is a temperature difference between the inside and outside of a material, heat will flow through the material from the warmer side to the cooler side.

The rate at which heat flows through a material is determined by a property called thermal conductivity, which is different for different materials. The amount of heat that flows through a material per unit time can be calculated using Fourier's Law of Heat Conduction. In this problem, we are given the dimensions of a glass window and its thickness, as well as the temperature difference between the inside and outside. We are asked to find the rate of heat flow through the window per minute. To solve this problem, we need to use the following formula:

q = kA (T1 - T2)/d

where q is the rate of heat flow, k is the thermal conductivity of the glass, A is the area of the window, T1 is the temperature on one side of the window, T2 is the temperature on the other side of the window, and d is the thickness of the window.

We are given the following values:

k for glass is approximately 0.9 W/m-K (we can convert this to cm units by dividing by 100)

A = 86 cm x 36 cm = 3096 cm^2

T1 - T2 = 17 degrees Celsius

d = 0.45 cm

Substituting these values into the formula, we get:

q = (0.9/100)(3096)(17)/(0.45)

q = 948.27 W

To convert to units of joules per minute, we need to multiply by 60:

q = 56,896.2 J/min

Therefore, the rate of heat flow through the window is approximately 56,896.2 joules per minute.

For more questions like temperature visit the link below:

https://brainly.com/question/10424494

#SPJ11

Gauche interactions between methyl groups on adjacent carbons are of higher conformational energy than anti interactions due to:
a. torsional strain &steric interactions
b. angle strain
c. ring strain
d. 1,3-diavial interaction

Answers

Gauche interactions between methyl groups on adjacent carbons are of higher conformational energy than anti interactions due to torsional strain and steric interactions.


When two methyl groups on adjacent carbons are in a gauche conformation, they experience torsional strain due to the eclipsed conformation of the carbon-carbon bond between them. Additionally, the methyl groups are bulky and repel each other due to steric interactions. This results in a higher conformational energy as compared to when the methyl groups are in an anti conformation, where they are more staggered and experience less torsional strain and steric interactions.

This effect is important in determining the stability of molecules and the favored conformational isomers in organic chemistry. The other options - angle strain, ring strain, and 1,3-diaxial interaction - do not directly apply to the interaction between methyl groups on adjacent carbons.

Learn more about torsional strain here:

https://brainly.com/question/19470723

#SPJ11

in what respect is a simple ammeter designed to measure electric current like an electric motor? explain.

Answers

The main answer to this question is that a simple ammeter is designed to measure electric current in a similar way to how an electric motor operates.

An electric motor uses a magnetic field to generate a force that drives the rotation of the motor, while an ammeter uses a magnetic field to measure the flow of electric current in a circuit.

The explanation for this is that both devices rely on the principles of electromagnetism. An electric motor has a rotating shaft that is surrounded by a magnetic field generated by a set of stationary magnets. When an electric current is passed through a coil of wire wrapped around the shaft, it creates a magnetic field that interacts with the stationary magnets, causing the shaft to turn.

Similarly, an ammeter uses a coil of wire wrapped around a magnetic core to measure the flow of electric current in a circuit. When a current flows through the wire, it creates a magnetic field that interacts with the magnetic core, causing a deflection of a needle or other indicator on the ammeter.

Therefore, while an electric motor is designed to generate motion through the interaction of magnetic fields, an ammeter is designed to measure the flow of electric current through the interaction of magnetic fields. Both devices rely on the same fundamental principles of electromagnetism to operate.

For more information on electric current visit:

https://brainly.com/question/2264542

#SPJ11

Referring to Chapter 38, this question has three sections. Each section is multiple choice, please select one answer per section.
i) If we change an experiment so to decrease the uncertainty in the location of a particle along an axis, what happens to the uncertainty in the particle’s momentum along that axis?
increases
decreases
remains the same
ii) Under what energy circumstances does an electron tunnel through a potential barrier? Explain selected.
when the kinetic energy is greater than the potential energy
when the potential energy is greater than the total energy
when the potential energy is less than the total energy
iii) How does an electron’s de Broglie wavelength after tunneling compare with that before tunneling (when the potential energy is the same before and after, as in this section)?
The wavelength is the same after tunneling.
The wavelength is greater after tunneling.
The wavelength is less after tunneling.

Answers

In quantum mechanics, the uncertainty principle states that the more precisely one knows a particle's position, the less precisely one can know its momentum, and vice versa. Therefore, decreasing the uncertainty in the location of a particle along an axis would increase the uncertainty in the particle's momentum along that axis. This is because the act of measuring one property of the particle changes the other property, leading to an inherent tradeoff between the two.

Electron tunneling refers to the phenomenon where an electron can pass through a potential barrier, despite not having enough energy to surmount it. The probability of tunneling depends on the height and width of the barrier, as well as the energy of the electron. When the potential energy of the barrier is less than the total energy of the electron, the electron can tunnel through the barrier. This is because the uncertainty principle allows for the particle to exist briefly on the other side of the barrier, with a certain probability.

When an electron tunnels through a potential barrier, its de Broglie wavelength is less after tunneling. This is because the de Broglie wavelength is inversely proportional to the momentum of the electron, and the momentum of the electron increases as it passes through the barrier. Additionally, the potential barrier acts as a filter, allowing only those electrons with a certain momentum to pass through. This results in a narrower distribution of momentum, and hence a shorter de Broglie wavelength.

Learn more Quantum Mecanics :

https://brainly.com/question/26095165

#SPJ11

A patient's far point is 115 cm and her near point is 14.0 cm. In what follows, we assume that we can model the eye as a simple camera, with a single thin lens forming a real image upon the retina. We also assume that the patient's eyes are identical, with each retina lying 1.95 cm from the eye's "thin lens."a.) What is the power, P, of the eye when focused upon the far point? (Enter your answer in diopters.)b.) What is the power, P, of the eye when focused upon the near point? (Enter your answer in diopters.)c.) What power (in diopters) must a contact lens have in order to correct the patient's nearsightedness?

Answers

The power of the eye when focused on the far point is: P = 1 / (0.0087 m) = 115 diopters  , The power of the eye when focused on the near point is: P = 1 / (0.015 m) = 67 diopters , The contact lens should have a focal length of 0.021 meters, or 2.1 cm.

a) The far point is the distance at which the eye can see objects clearly without accommodation, meaning that the lens is not changing shape to focus the light. This means that the far point is the "resting" point of the eye, and we can use it to calculate the power of the eye's lens using the following formula:

P = 1/f

where P is the power of the lens in diopters, and f is the focal length of the lens in meters. Since the eye's far point is 115 cm away, the focal length of the lens is:

f = 1 / (115 cm) = 0.0087 m

So the power of the eye when focused on the far point is:

P = 1 / (0.0087 m) = 115 diopters

b) The near point is the closest distance at which the eye can see objects clearly, and it requires the lens to increase its power by changing shape (i.e. by increasing its curvature). We can use the near point to calculate the power of the eye when it is fully accommodated, using the same formula:

P = 1/f

where f is now the focal length of the lens when it is fully accommodated. Since the near point is 14 cm away, we can calculate the focal length as follows:

1/f = 1/115 cm - 1/14 cm

f = 0.015 m

So the power of the eye when focused on the near point is:

P = 1 / (0.015 m) = 67 diopters

c) To correct the patient's nearsightedness, we need to add a diverging (negative) lens that will compensate for the excess power of the eye when it is fully accommodated. The power of this lens can be calculated as follows:

P_contact = -1 / f_contact

where P_contact is the power of the contact lens in diopters, and f_contact is its focal length in meters. We want the lens to correct the eye's excess power by an amount equal to the difference between the power of the eye when focused on the far point and when focused on the near point, which is:

ΔP = P_near - P_far = 67 - 115 = -48 diopters

So the power of the contact lens should be:

P_contact = -1 / f_contact = -48 diopters

f_contact = -1 / P_contact = 0.021 m

Therefore, the contact lens should have a focal length of 0.021 meters, or 2.1 cm.

To learn more about focal length refer here:

https://brainly.com/question/16188698#

#SPJ11

A metal surface is illuminated by light with a wavelength of 350 nm. The maximum kinetic energy of the emitted electrons is found to be 1.10 eV.
What is the maximum electron kinetic energy if the same metal is illuminated by light with a wavelength of 250 nm? E2=....eV

Answers

The maximum electron kinetic energy is 2.51 eV if the same metal is illuminated by light with a wavelength of 250 nm.

When light with a sufficiently short wavelength is incident on a metal surface, the energy of the photons can be transferred to the electrons in the metal. If the energy of a photon is greater than the work function of the metal, an electron can be ejected from the metal surface.

The maximum electron kinetic energy, E2, can be calculated using the formula:

E2 = hc/λ2 - hc/λ1 - φ

where h is the Planck constant, c is the speed of light, λ1 is the wavelength of the first light, λ2 is the wavelength of the second light, and φ is the work function of the metal.

Substituting the given values, we get:

E2 = (6.626 x 10⁻³⁴ J.s x 3.00 x 10⁸ m/s / (250 x 10⁻⁹ m)) - (6.626 x 10⁻³⁴ J.s x 3.00 x 10⁸ m/s / (350 x 10⁻⁹ m)) - 1.10 eV

E2 = 2.51 eV

If the same metal is irradiated by light with a wavelength of 250 nm, the maximum electron kinetic energy is 2.51 eV.

To know more about the Kinetic energy, here

https://brainly.com/question/29822151

#SPJ4

A charge of 0. 05 C moves a negative charge upward due to a 2 N force exerted by an electric field. What is the magnitude and direction of the electric field?.

Answers

The magnitude of the electric field is 40 N/C, directed downward. The negative charge experiences an upward force due to the field, resulting in its motion. Given: Charge (q) = 0.05 C Force (F) = 2 N

The electric field (E) is related to the force experienced by a charged particle using the equation:

F = q * E

Rearranging the equation, we can solve for the electric field:

E = F / q

= 2 N / 0.05 C

= 40 N/C

Since the charge experiences an upward force, the electric field must be directed downward, in the opposite direction.

The magnitude of the electric field is 40 N/C, directed downward. The negative charge experiences an upward force due to the field, resulting in its motion.

learn more about electric here:

https://brainly.com/question/15449094

#SPJ11

A fish is swimming at 5 m/s upstream with a stream flow of 10 m/s in the opposite direction.

Answers

The fish's net velocity is 5 m/s downstream, calculated by subtracting the stream flow (10 m/s) from its swimming speed (5 m/s).

When an object moves against a current or stream, the net velocity is the difference between its own velocity and the velocity of the stream. In this case, the fish is swimming upstream at 5 m/s, while the stream is flowing downstream at 10 m/s. To find the net velocity of the fish, we subtract the stream velocity from the fish's swimming velocity:

Net velocity = Swimming velocity - Stream velocity

= 5 m/s - 10 m/s

= -5 m/s

The negative sign indicates that the fish is moving in the opposite direction of the stream. Therefore, the fish's net velocity is 5 m/s downstream.

learn more about velocity  here:

https://brainly.com/question/30559316

#SPJ11

Approximate the threshold voltage VT of the MOSFET by finding the value of VGS which just starts to produce a non-zero drain current.
Pick a few values of VGS for which the drain current ID shows a clearly defined saturation. Find the value of VD at which the drain current ID reaches its saturation value and then compare this actual value of VDS,sat to the computed value of VGS – VT

Answers

By comparing the actual and computed values of VDS,sat, we can assess the accuracy of our estimate of the threshold voltage VT.

To approximate the threshold voltage VT of a MOSFET, we need to find the value of VGS which just starts to produce a non-zero drain current. This can be done by measuring the drain current ID for different values of VGS and looking for the value of VGS where ID first starts to increase.

Once we have determined the threshold voltage VT, we can then pick a few values of VGS for which the drain current ID shows a clearly defined saturation.

Saturation occurs when the drain current ID reaches a maximum value and does not increase further with increasing VDS.

To find the value of VD at which the drain current ID reaches its saturation value, we can measure the drain current ID for different values of VDS at a fixed value of VGS.

The value of VDS at which the drain current ID reaches its saturation value is known as VDS,sat.

We can then compare the actual value of VDS,sat to the computed value of VGS - VT. The relationship between VDS,sat and VGS - VT is given by:

VDS,sat ≈ VGS - VT

This equation provides an approximation of the saturation voltage VDS,sat as a function of the gate-source voltage VGS and the threshold voltage VT.

To know more about  comparing refer here

https://brainly.com/question/14908224#

#SPJ11

To approximate the threshold voltage (VT) of a MOSFET, we can analyze the behavior of the drain current (ID) at different gate-source voltages (VGS). By observing the values of VGS where ID shows saturation, we can estimate the threshold voltage.

1. Choose a few values of VGS for which ID exhibits clear saturation. Let's say we select three values: VGS1, VGS2, and VGS3.

2. For each selected VGS, measure the corresponding drain current ID. Let's denote them as ID1, ID2, and ID3, respectively.

3. Determine the value of VD at which the drain current ID reaches its saturation value. This is the value of VDS,sat.

4. Compute the value of VGS - VT for each VGS, where VT is the threshold voltage we are trying to approximate.

5. Compare the computed values of VGS - VT to the actual value of VDS,sat. If the MOSFET is operating in saturation, we expect VDS,sat to be close to VGS - VT.

If VDS,sat is approximately equal to VGS - VT for multiple values of VGS, then the threshold voltage VT can be estimated as the average of VGS - VT values.

It's important to note that this method provides an approximation of the threshold voltage and may not be as accurate as direct measurements or more sophisticated techniques.

To know more about drain current refer here

https://brainly.com/question/31688542#

#SPJ11

Based on fossil evidence, about how long ago did the

first single-celled life form appear on Earth?O 130 million years ago

O 1. 5 billion years ago

O

2. 5 billion years ago

O

4. 1 billion years ago

Answers

1.5 million years ago.

Please let me know if i’m wrong, thank you!

A class A pan is maintained near a small lake to determine daily evaporation (see table). The level in the pan is observed at the end of everyday. Water is added if the level falls near 5 inches. For each day the difference in the height level is calculated between the current and previous day. And the precipitation value is from the current day. Determine the daily lake evaporation if the pan coefficient is 0.7.

Answers

To calculate the daily lake evaporation, multiply the pan coefficient (0.7) by the difference in the height level between the current and previous day, then subtract the precipitation value for the current day.

The class A pan measures evaporation, and the pan coefficient is used to account for differences between the pan and the lake. By multiplying the pan coefficient by the change in water level and subtracting precipitation, you get an accurate estimate of the daily lake evaporation.

After calculating the pan evaporation for each day, we can sum up the values to find the total evaporation for the time period covered by the table. This will give us the daily lake evaporation that was requested in the question. The question is determining the daily lake evaporation if the pan coefficient is 0.7, using the observed level in a class A pan and the given precipitation value.

To learn more about evaporation visit:

brainly.com/question/5019199

#SPJ11


using the power law, =, and ohm’s law, =, obtain an expression for the maximum current you can safely apply to a ¼ watt 3 ω resistor.

Answers

Using the power law and Ohm’s law, the maximum current that can safely be applied to a ¼ watt 3 ω resistor is 0.0577 amps or approximately 58 milliamps.

The power law states that power is equal to current squared times resistance, or P = I^2R. We can rearrange this equation to solve for current, giving us I = sqrt(P/R).

Now, we can use Ohm’s law, which states that current is equal to voltage divided by resistance, or I = V/R. We can rearrange this equation to solve for voltage, giving us V = IR.

Putting these two equations together, we get V = I * 3, since the resistor is 3 ω. We can substitute this expression for V in the first equation, giving us I = sqrt(P/(I * 3)).

To find the maximum current that can be safely applied, we need to know the maximum power that the resistor can handle. In this case, it is ¼ watt. Substituting this into our equation, we get I = sqrt((1/4)/(I * 3)), or I = 0.0577 amps.

For more such questions on Ohm’s law:

https://brainly.com/question/12865879

#SPJ11

Using the power law and Ohm’s law, the maximum current that can safely be applied to a ¼ watt 3 ω resistor is 0.0577 amps or approximately 58 milliamps.

The power law states that power is equal to current squared times resistance, or P = I^2R. We can rearrange this equation to solve for current, giving us I = sqrt(P/R).

Now, we can use Ohm’s law, which states that current is equal to voltage divided by resistance, or I = V/R. We can rearrange this equation to solve for voltage, giving us V = IR.

Putting these two equations together, we get V = I * 3, since the resistor is 3 ω. We can substitute this expression for V in the first equation, giving us I = sqrt(P/(I * 3)).

To find the maximum current that can be safely applied, we need to know the maximum power that the resistor can handle. In this case, it is ¼ watt. Substituting this into our equation, we get I = sqrt((1/4)/(I * 3)), or I = 0.0577 amps.

Visit to know more about Ohm,s law:-

brainly.com/question/12865879

#SPJ11

A 20.0 uF capacitor is charged to a potential of 50.0 V and then discharged through a 265 12 resistor. How long does it take the capacitor to lose half of its charge? Express your answer in milliseconds

Answers

It takes the capacitor 5.3 milliseconds to lose half of its charge.

To find the time it takes for a capacitor to lose half of its charge, we can use the formula for the time constant (τ) of an RC circuit:

τ = RC

Where R is the resistance (in ohms) and C is the capacitance (in farads). In this case, R = 265 Ω and C = 20.0 µF (which is equivalent to 20.0 x 10^-6 F).

τ = (265 Ω) (20.0 x 10^-6 F) = 5.3 x 10^-3 s

Now, we know that when a capacitor discharges to half its initial charge, it loses approximately 63.2% of its charge, which occurs at one time constant. Therefore, the time it takes to lose half its charge is:

5.3 x 10^-3 s = 5.3 milliseconds

So, it takes the capacitor 5.3 milliseconds to lose half of its charge.

To learn more about charge, refer below:

https://brainly.com/question/3412043

#SPJ11

If blue light of wavelength 434 nm shines on a diffraction grating and the spacing of the resulting lines on a screen that is 1.05m away is what is the spacing between the slits in the grating?

Answers

When a beam of light passes through a diffraction grating, it is split into several beams that interfere constructively and destructively, creating a pattern of bright and dark fringes on a screen, The spacing between the slits in the diffraction grating is approximately 1.49 μm.

d sin θ = mλ, where d is the spacing between the slits in the grating, θ is the angle between the incident light and the screen, m is the order of the fringe, and λ is the wavelength of the light.

In this problem, we are given that the wavelength of the blue light is λ = 434 nm, and the distance between the screen and the grating is L = 1.05 m. We also know that the first-order fringe (m = 1) is located at an angle of θ = 11.0 degrees.

We can rearrange the formula to solve for the spacing between the slits in the grating: d = mλ/sin θ Substituting the given values, we get: d = (1)[tex](4.34 x 10^{-7} m)[/tex] (4.34 x [tex]1.49 x 10^{-6}[/tex] /sin(11.0 degrees) ≈ [tex]1.49 x 10^{-6}[/tex] m

Therefore, the spacing between the slits in the diffraction grating is approximately 1.49 μm.

Know more about diffraction here

https://brainly.com/question/12290582

#SPJ11

A 0.54-kg mass attached to a spring undergoes simple harmonic motion with a period of 0.74 s. What is the force constant of the spring?
a.)_______ N/m

Answers

A 0.54-kg mass attached to a spring undergoes simple harmonic motion with a period of 0.74 s. The force constant of the spring is 92.7 N/m .

The period of a mass-spring system can be expressed as:

T = 2π√(m/k)

where T is the period, m is the mass, and k is the force constant of the spring.

Rearranging the above formula to solve for k, we get:

k = (4π[tex]^2m) / T^2[/tex]

Substituting the given values, we get:

k = (4π[tex]^2[/tex] x 0.54 kg) / (0.74 [tex]s)^2[/tex]

k ≈ 92.7 N/m

Therefore, the force constant of the spring is approximately 92.7 N/m.

To know more about Force refer here :

https://brainly.com/question/13482747

#SPJ11

What acceleration results from exerting a 25n horizontal force on 0.5kg ball at rest?

Answers

The acceleration of the ball is 50 m/s² when a 25 N horizontal force is exerted on it.

To find the acceleration of the 0.5 kg ball when a 25 N horizontal force is exerted on it, we can use the formula:

Acceleration (a) = Force (F) / Mass (m)

where a is in meters per second squared, F is in Newtons, and m is in kilograms.

Plugging in the values given, we get:

a = 25 N / 0.5 kg

a = 50 meters per second squared

So the acceleration of the ball is 50 m/s² when a 25 N horizontal force is exerted on it.

Know more about horizontal force here

https://brainly.com/question/11489210#

#SPJ11

a 0.52-mm-diameter hole is illuminated by light of wavelength 490 nm. What is the width of the central maximum on a screen 2.1 mbehind the slit? (in mm)

Answers

The width of the central maximum on the screen is approximately 3.84 mm.

To solve this problem, we need to use the equation for the width of the central maximum, which is given by:
w = (λL) / D
where w is the width of the central maximum, λ is the wavelength of the light, L is the distance from the slit to the screen, and D is the diameter of the slit.
Plugging in the given values, we get:
w = (490 nm x 2.1 m) / 0.52 mm
First, we need to convert the units to the same system. Let's convert 2.1 m to millimeters:
2.1 m = 2,100 mm
Now we can substitute the values:
w = (490 nm x 2,100 mm) / 0.52 mm
Simplifying, we get:
w = 1,995,000 nm-mm / 0.52 mm
w = 3,836,538.46 nm
Finally, we need to convert nanometers back to millimeters:
w = 3,836,538.46 nm / 1,000,000 = 3.84 mm
Therefore, the width of the central maximum on the screen is approximately 3.84 mm.

To know more about wavelength visit:

https://brainly.com/question/31143857

#SPJ11

An ac voltage, whose peak value is 150 V, is across a 330 -Ω resistor.
What is the peak current in the resistor? answer in A
What is the rms current in the resistor? answer in A

Answers

Peak current in the resistor = 150 V / 330 Ω = 0.4545 A
RMS current in the resistor = Peak current / √2 ≈ 0.3215 A


The peak current in the resistor can be found using Ohm's Law (V = IR).

In this case, the peak voltage (150 V) is across a 330-Ω resistor. To find the peak current, we simply divide the peak voltage by the resistance:
Peak current = 150 V / 330 Ω = 0.4545 A (approx)
To find the RMS (Root Mean Square) current, we need to divide the peak current by the square root of 2 (√2):
RMS current = Peak current / √2 ≈ 0.4545 A / √2 ≈ 0.3215 A
So, the peak current in the resistor is approximately 0.4545 A, and the RMS current is approximately 0.3215 A.

For more such questions on current, click on:

https://brainly.com/question/1100341

#SPJ11


Your answer: The peak current in the resistor is approximately 0.4545 A, and the RMS current in the resistor is approximately 0.3215 A.

To find the peak current in the resistor, we can use Ohm's Law, which states that Voltage (V) = Current (I) × Resistance (R). We can rearrange this formula to find the current: I = V/R.

1. Peak current: Given the peak voltage (V_peak) of 150 V and the resistance (R) of 330 Ω, we can calculate the peak current (I_peak) as follows:

I_peak = V_peak / R = 150 V / 330 Ω ≈ 0.4545 A

2. RMS current: To find the RMS (root-mean-square) current, we can use the relationship between peak and RMS values: I_RMS = I_peak / √2.

I_RMS = 0.4545 A / √2 ≈ 0.3215 A

To learn more about RMS current : brainly.com/question/29347502

#SPJ11

Global warming emissions from electricity generation Each state in the United States has a unique profile of electricity generation types, and this characteristic is also true for cities within these states. Using the table of electricity generation sources below: a. Calculate in a table the global warming index for each city's electricity based on 1 kWh generated. b. Compare and discuss the global warming index for each city. Which city has the lowest global warming index?

Answers

Each state and city in the United States has a unique profile of electricity generation types, which has a direct impact on its global warming emissions.

Global warming is one of the most significant environmental issues of our time. Electricity generation is one of the biggest contributors to global warming emissions. The generation of electricity produces a large amount of greenhouse gases, including carbon dioxide, methane, and nitrous oxide, which trap heat in the atmosphere and contribute to global warming.
The table of electricity generation sources can be used to calculate the global warming index for each city's electricity based on 1 kWh generated.
To calculate the global warming index for each city, we can use the emissions factors for each electricity generation source and multiply them by the amount of electricity generated by that source. The sum of the emissions from each source will give us the total global warming emissions for 1 kWh of electricity generated.
When we compare the global warming index for each city, we can see that some cities have a much lower global warming index than others. For example, Seattle has a global warming index of 0.137 kg CO2e/kWh, while Houston has a global warming index of 0.915 kg CO2e/kWh.
The city with the lowest global warming index is Seattle, which has a significant amount of its electricity generated from hydropower, which produces very little greenhouse gas emissions. Other cities that have a relatively low global warming index include San Francisco and Portland, which also have a significant amount of their electricity generated from renewable sources.
In conclusion, the electricity generation profile of a city has a significant impact on its global warming emissions. By promoting the use of renewable energy sources and reducing the reliance on fossil fuels, cities can reduce their global warming index and contribute to the fight against climate change.

To know more about electricity visit:

https://brainly.com/question/12791045

#SPJ11

Two charges q1=2x10-10 and q2=8x10-10 are near each other and charge q1 exerts a force on q2 with force F12. What is F21 --the force between q2 and q1 ?

Answers

F21 is equal to F12 due to Newton's third law of motion; both charges exert equal and opposite forces.


According to Newton's third law of motion, every action has an equal and opposite reaction.

In the context of the charges q1 and q2, this means that if q1 exerts a force (F12) on q2, then q2 will exert an equal and opposite force (F21) on q1.

The force between the two charges can be calculated using Coulomb's law: F = k * (q1 * q2) / r^2, where k is Coulomb's constant, and r is the distance between the charges.

However, in this case, you don't need to calculate the force since F21 will be equal to F12, regardless of their magnitudes, as dictated by Newton's third law.

For more such questions on motion, click on:

https://brainly.com/question/29671258

#SPJ11

F21 is equal to F12 due to Newton's third law of motion; both charges exert equal and opposite forces.

According to Newton's third law of motion, every action has an equal and opposite reaction.

In the context of the charges q1 and q2, this means that if q1 exerts a force (F12) on q2, then q2 will exert an equal and opposite force (F21) on q1.

The force between the two charges can be calculated using Coulomb's law: F = k * (q1 * q2) / r^2, where k is Coulomb's constant, and r is the distance between the charges.

However, in this case, you don't need to calculate the force since F21 will be equal to F12, regardless of their magnitudes, as dictated by Newton's third law.

Visit to know more about Motion:-

brainly.com/question/29671258

#SPJ11

Determine the minimum force P needed to push the tube E up the incline. The force acts parallel to the plane, and the coefficients of static friction at the contacting surfaces are mu_A = 0.2, mu_B = 0.3, and mu_C = 0.4. The 100-kg roller and 40-kg tube each have a radius of 150 mm.

Answers

The minimum force P needed to push the tube E up the incline is 470.4 N, which is equal to the maximum force of friction on the surface with the highest coefficient of static friction.

To determine the minimum force P needed to push tube E up the incline, we need to consider the coefficients of static friction at the contacting surfaces and the weight of the roller and tube. The force acts parallel to the plane, which means it is in the same direction as the incline.

To calculate the minimum force, we need to find the maximum force of friction acting against the tube. We can do this by multiplying the normal force by the coefficient of static friction. The normal force is the weight of the roller and tube combined, which is (100 + 40) kg times the acceleration due to gravity, or 1176 N.

Using the given coefficients of static friction, we can find the maximum force of friction for each surface:
- Surface A: (0.2)(1176 N) = 235.2 N
- Surface B: (0.3)(1176 N) = 352.8 N
- Surface C: (0.4)(1176 N) = 470.4 N

Since the force acts parallel to the plane, it is also in the same direction as the force of friction. Therefore, the minimum force P needed to push the tube up the incline is equal to the force of friction acting against the tube, which is the maximum force of friction on the surface with the highest coefficient (Surface C):
P = 470.4 N

To know more about the friction, click here;

https://brainly.com/question/13000653

#SPJ11

A system consists of three particles, each of mass 4.40 g, located at the corners of an equilateral triangle with sides of 45.0 cm.
(a) Calculate the potential energy of the system.

Answers

The total gravitation energy of the system is 8.55 x 10⁻¹⁵ J.

What is the gravitational potential energy of the system?

The gravitational potential energy of the system is calculated as follows;

U(total) = U₁₂ + U₁₃  + U₂₃

U(total) = G [m₁m₂/R₁₂  + m₁m₃/R₁₃  +  m₂m₃/R₂₃ ]

where;

G is universal gravitation constantm₁, m₂, m₃, are the masses at the connersR₁₂, R₁₃, R₂₃ are the distance of the masses

The total gravitation energy of the system is calculate as follows;

U(total) = G [m₁m₂/R₁₂  + m₁m₃/R₁₃  +  m₂m₃/R₂₃ ]

U(total) = G/R [m²  + m²   + m² ]

U(total) = G/R [3m²]

U(total) = (6.626 x 10⁻¹¹/ 0.45) [3 (0.0044)²]

U(total) = 8.55 x 10⁻¹⁵ J

Learn more about potential energy here: https://brainly.com/question/1242059

#SPJ4

Consider light from a helium-neon laser ( \(\lambda= 632.8\) nanometers) striking a pinhole with a diameter of 0.375 mm.At what angleto the normal would the first dark ring be observed?

Answers

The first dark ring would be observed at an angle of approximately 0.0967° to the normal.

To find the angle to the normal at which the first dark ring would be observed when light from a helium-neon laser (λ = 632.8 nm) strikes a pinhole with a diameter of 0.375 mm, we can use the formula for the angular position of dark fringes in a single-slit diffraction pattern:

θ = (m * λ) / a

where θ is the angle to the normal, m is the order of the dark fringe (m = 1 for the first dark ring), λ is the wavelength of the light (632.8 nm), and a is the width of the slit (0.375 mm).

First, convert the slit width to nanometers:

a = 0.375 mm * 10^6 nm/mm = 375,000 nm

Now, plug in the values into the formula:

θ = (1 * 632.8 nm) / 375,000 nm

θ ≈ 0.001688

To find the angle in degrees, use the small-angle approximation:

θ ≈ 0.001688 * (180° / π)

θ ≈ 0.0967°

So, the first dark ring would be observed at an angle of approximately 0.0967° to the normal.

Learn more about "angle": https://brainly.com/question/25716982

#SPJ11

A camera lens usually consists of a combination of two or more lenses to produce a good-quality image. Suppose a camera lens has two lenses - a diverging lens of focal length 11.7 cm and a converging lens of focal length 5.85 cm. The two lenses are held 6.79 cm apart. A flower of length 11.7 cm, to be pictured, is held upright at a distance 52.5 cm in front of the diverging lens; the converging lens is placed behind the diverging lens. a) How far to the right of the convex lens is the final image?

Answers

The final image is 16.69 cm to the left of the converging lens. To visualize the image, we can draw a ray diagram. The picture of the flower would appear upside down and smaller than the actual flower.

The image is formed by the converging lens, so we use the lens equation:
1/f = 1/do + 1/di
where f is the focal length of the converging lens, do is the object distance (distance from the object to the diverging lens), and di is the image distance (distance from the converging lens to the final image).
We know f = 5.85 cm, do = 52.5 cm - 11.7 cm = 40.8 cm, and the distance between the lenses is 6.79 cm.
Using the thin lens formula, we can find the image distance for the diverging lens:
1/f = 1/do - 1/di
where f is the focal length of the diverging lens. Solving for di, we get di = -23.48 cm.
Since the diverging lens produces a virtual image (negative di), the final image is formed by the converging lens. The distance from the converging lens to the final image is the sum of the distances between the lenses and the image distance for the diverging lens:
di final = di diverging + distance between lenses
di final = -23.48 cm + 6.79 cm = -16.69 cm
To know more about the final image visit :

https://brainly.com/question/13147714

#SPJ11

what condition would most likely cause a decrease in the salinity of ocean water?

Answers

An increase in freshwater input, such as from heavy precipitation or melting of glaciers, would most likely cause a decrease in the salinity of ocean water.

When freshwater enters the ocean, it dilutes the salt content, leading to a decrease in salinity. This can happen in various ways, such as increased precipitation over the ocean, melting of ice caps and glaciers, or the influx of freshwater from rivers. Climate change is contributing to this phenomenon, as rising temperatures cause ice caps and glaciers to melt faster, leading to a higher volume of freshwater entering the ocean. This decrease in salinity can have significant impacts on marine life, affecting their physiology, distribution, and breeding patterns. It can also affect ocean currents and weather patterns, which have far-reaching effects on global climate.

Learn more about salinity of ocean water here :

https://brainly.com/question/3212065

#SPJ11

A solenoid of radius r = 1.25 cm and length ℓ = 30.0 cm has 300 turns and carries 12.0 A. (a) Calculate the flux through the surface of a disk-shaped area of radius R = 5.00 cm that is positioned perpendicular to and centered on the axis of the solenoid as shown in Figure P30.48a. (b) Figure P30.48b shows an enlarged end view of the same solenoid. Calculate the flux through the tan area, which is an annulus with an inner radius of a = 0.400 cm and an outer radius of b = 0.800 cm.

Answers

The flux is 0.0118 Wb. The flux through the annular region is 2.26×[tex]10^{-6[/tex]

(a) The magnetic field at the center of the solenoid is given by the formula B = μ₀nI, where μ₀ is the permeability of free space, n is the number of turns per unit length, and I is the current. Thus, the magnetic field at the center of the solenoid is:

B = μ₀nI = (4π×[tex]10^{-7[/tex] T·m/A)(300/0.3 m)(12.0 A) = 1.51 T

The flux through the disk-shaped area can be calculated as Φ = BA, where A is the area of the disk. The area of the disk is A = π[tex]R^2[/tex] = π(0.050 [tex]m)^2[/tex]= 0.00785 [tex]m^2[/tex]. Thus, the flux is:

Φ = BA = (1.51 T)(0.00785 [tex]m^2[/tex]) = 0.0118 Wb

(b) The flux through the annular region can be calculated as the difference in flux between two concentric circles, one with radius b and the other with radius a. The magnetic field at a point on the axis of the solenoid a distance z from the center is given by the formula B = μ₀nIz/(2R), where R is the radius of the solenoid. Thus, the magnetic field at the inner and outer radii of the annular region are:

B_a = μ₀nIa/(2R) = [tex](4π×10^{-7} T·m/A)(300/0.3 m)(12.0 A)(0.004 m)/(2×0.0125 m) = 2.40×10^{-3 }T[/tex]

B_b = μ₀nIb/(2R) = [tex](4π×10^{-7} T·m/A)(300/0.3 m)(12.0 A)(0.008 m)/(2×0.0125 m) = 4.79×10^{-3} T[/tex]

The flux through the annular region is then:

Φ = π([tex]b^2 - a^2[/tex])B = π(0.0008 m^2 - 0.00016 [tex]m^2[/tex])(4.79×[tex]10^{-3[/tex]T - 2.40×[tex]10^{-3[/tex] T) = 2.26×[tex]10^{-6[/tex]Wb.

Learn more about magnetic field here:

https://brainly.com/question/14848188

#SPJ11

Other Questions
A civil engineering student working on his thesis plans a survey to determine the proportion of all current drivers that regularly wear seat He desto classmates in the three classe he is currently woed. What is the sampling technique used in this data collection Can you go for the point then this example Give reasons in the electron configuration of inner transition metal pr, the designation of the orbital with the highest energy is ____.4f6p2d7f5s 9. Before the baseball season begins, a field manager outlines the 'on-deck circle with chalk andcovers the area with dirtChalk lineIf the on-deck circle has a diameter of 6 feet, which expressions couldbe used to determine the length of the chalk outline?A 6pieC 2(3)B 129D (2)(6) a 1260-kg car moves at 21.0 m/s. how much work net must be done on the car to increase its speed to 35.0 m/s? Complete the table of values for the graph with equation y=x^2-3x+6 2.37 a lossless transmission line is terminated in a short circuit. how long (in wavelengths) should the line be for it to appear as an open circuit at its input terminals? A quantity of Xe occupies 321 mL at 300 oC and 2.09 atm. What will be the temperature if the volume is increased to 553 mL at 305 torr?259 K586 K134 K189.5 K306 K The Ksp for LaF3 is 2 x 10^-19. What is the solubility of LaF3 in water in moles per liter? how long does it take for a banana peel to degrade jerry is a professional football player and wants to increase his physical flexibility. what is most accurate about exercise toward this goal? cullumber company has beginning raw material inventory $10,000, ending raw materials inventory $12,600, and raw material purchases $142,800. what is the cost of direct materials used? Monroe buys a new television for $795. She receives consumer surplus of $355 from the purchase. How much does Monroe value her television The position of a mass oscillating on a spring is given by x = ( 3.6 cm)cos[2pi t/(0.67s)].A. What is the period of this motion?T=? sB. What is the first time the mass is at the position x = 0?t=? s What carboxylic acid and alcohol are needed to synthesize benzyl acetate? In a 10.0 L vessel at 100.0 C, 10.0 grams of an unknown gas exert a pressure of 1.13 atm. What is the gas? Data sheet and Periodic Table a. The gas is NH3 and the molar mass is 17 g.mol-1. b. The gas is NO and the molar mass is 30 g.mol-1 c. The gas is HCN and the molar mass is 27 g.mol-1 d. The gas is NO2 and the molar mass is 46 g.mol-1 When the UH Bookstore orders a large shipment of football jerseys just before the big game, this type of inventory is typically called:A.Cycle StockB.Smoothing InventoryC.Hedge InventoryD.Anticipation InventoryE.Transportation Inventory When a statement asserts something and then asserts something about its own assertion with the two statements being mutually exclusive, it is called a Select one: O a. Subtext. O b. Paradox O c. Circular argument. Od. Double bind. O e Processing error more equation things Find the area in the right tail more extreme than z = 2.25 in a standard normal distribution Round your answer to three decimal places. Area Find the area in the right tail more extreme than = -1.23 in a standard normal distribution Round your answer to three decimal places Area Find the area in the right tail more extreme than z = 2.25 in a standard normal distribution. Round your answer to three decimal places. Area = i for each of the metabolic transformations (a) through (d), determine whether the compound on the left has undergone oxidation or reduction. balance each transformation by inserting