15/3 = 5 4_7 + 5 2_3
b=?

Answers

Answer 1

Answer:

0 < 5 < 54/7 < 52/3

Step-by-step explanation

0/21 < 105/21 < 162/21 < 364/21


Related Questions

Evaluate the sum (for math nerds)
[tex]i {}^{0!} + i {}^{1!} + i {}^{2!} + i {}^{3!} + ... + i {}^{100!} [/tex]
Note that :
[tex]i = \sqrt[]{ - 1} [/tex]

Answers

Answer: i+96

Step-by-step explanation:

Note that [tex]i^{4k}[/tex], where k is an integer, is equal to 1.

This means that [tex]i^{4!}=i^{5!}=i^{6}=\cdots=i^{99!}+i^{100!}=1[/tex]

So, we can rewrite the sum as [tex]i^{1}+i^{1}+i^{2}+i^3+97(1)=i+i-1-i+97=i+96[/tex]

[tex]n![/tex] is divisible by 4 for all [tex]n\ge4[/tex]. This means, for instance,

[tex]i^{4!} = \left(i^4\right)^{3!} = 1^{3!} = 1[/tex]

[tex]i^{5!} = \left(i^4\right)^{5\times3!} = 1^{5\times3!} = 1[/tex]

etc, so that [tex]i^{n!} = 1[/tex] for all [tex]n\ge4[/tex].

Meanwhile,

[tex]i^{0!} = i^1 = i[/tex]

[tex]i^{1!} = i^1 = i[/tex]

[tex]i^{2!} = i^2 = -1[/tex]

[tex]i^{3!} = i^6 = (-1)^3 = -1[/tex]

Then the sum we want is

[tex]i^{0!} + i^{1!} + i^{2!} + i^{3!} + 97\times1 = i + i - 1 - 1 + 97 = \boxed{95+2i}[/tex]

Complete the equations to solve 1{,}860 \div61,860÷61, comma, 860, divided by, 6.
\phantom{=}\greenD{1{,}860}\div{\blueD6}=1,860÷6empty space, start color #1fab54, 1, comma, 860, end color #1fab54, divided by, start color #11accd, 6, end color #11accd
=(\greenD{1{,}800}\div\,=(1,800÷equals, left parenthesis, start color #1fab54, 1, comma, 800, end color #1fab54, divided by
) \, + \,(\greenD{60}\div\,)+(60÷right parenthesis, plus, left parenthesis, start color #1fab54, 60, end color #1fab54, divided by
))right parenthesis
= 300 +=300+equals, 300, plus
==equals

Answers

The division of the figure based on the information is 14.09.

How to illustrate the information?

It should be noted that the question is simply to divide 860 by 61.

The division based on the information will be illustrated thus:

= 860 ÷ 61

= 14.09

In conclusion, the correct option is 14.09.

Learn more about division on:

brainly.com/question/1622425

#SPJ1

Write these decimals in order from smallest to largest: 0.507, 0.75, 0.5, 0.078

Answers

0.078, 0.5, 0.507, 0.75.

Hope it helps ; )
0.078, 0.5, 0.507, 0.75

x is directly proportional to y. When x = 4, y = 7. Work out the value
of y when x = 12

Answers

Answer:

y = 21

Step-by-step explanation:

When x is directly proportional to y:

When x increases, y also increases.

In this case, it is so you write,

1. Write down the formula: y=kx

k being the constant.

Let's use "When x = 4, y = 7" to work out the constant.

2. Substitute the 'when' values: 7=k×4

3. Rearrange to find the constant: 7÷4=k

4. Find k: k=1.75

Now let's see the new problem, 'what is y when x = 12'.

5. Substitute the values now but keep the constant: y = 1.75 × 12

6. Rearrange if needed.

7. Find the missing value: y = 21

Hope this helped and if you require further assistance from me please comment below! :)

Ps: If it was inversely proportional then the formula would be y = k / x

with k still being the constant.

Please look at the attachment and answer my question :(

Answers

Answer:

AB / BC = 2 / 3

A equals 9 and C = 13

AC = 13 - 9 = 4

AB + BC = 13

A) AB + BC = 4

B) AB / BC = 2/3   Therefore BC = AB / (2/3)  

B) BC = 1.5 AB  

A) BC = 4 - A/B

Multiplying equation A) by -1

A) -BC = -4 + AB then we add equation B)

B) BC = 1.5 AB then adding both equations

0 = 2.5 AB -4

2.5 AB = 4

AB = 1.6

Since A = 9 then the number at B is 9 + 1.6

equals 10.6

Step-by-step explanation:

Answer:

The number at B is 10.6

Step-by-step explanation:

Let the number at B be x.

We know that distance between two points on the number line is the absolute value of the difference of numbers at those points.

Then distances representing the lengths of segments AB and BC are:

AB = x - 9BC = 13 - x

We are given the ratio of segments:

AB/BC = 2/3

Substitute and solve for x:

(x - 9)/(13 - x) = 2/33(x - 9) = 2(13 - x)3x - 27 = 26 - 2x3x + 2x = 26 + 275x = 53x = 53/5x = 10.6

Suppose f(x) and g(x) are differentiable functions satisfying f(1) = f′(1) = 2. Let
h(x) = g(f(x)) − g(2x). Determine whether h′(1) > 1

Answers

Answer:

1777777777888876332222233

inverse function of f(x)=x-7/x+4

Answers

Final Answer: The inverse of f (x)=7x-4 is f^-1 (x)= (x+4)/7

A particle travels so that its distance D (in metres) from its origin O is modelled by the equation D = 24 + 15t - [tex]\frac{t^{2} }{2}[/tex], where t is the time in minutes after the particle has started to move.

a. calculate the particle's distance from O when it first started to move.

b. determine the time when the particle first reaches O. Give your answer to 2 decimal places.

c. determine the particle's speed when it has been moving for 3 minutes. Give your answer in m [tex]S^{-1}[/tex]

Answers

(a) The particle's distance from O when it first started to move is 24 m.

(b) The time when the particle first reaches O is 15 mins.

(c) The particle's speed when it has been moving for 3 minutes is 0.2 m/s.

Particle's distance from O when it first started to move

D = 24 + 15 - t²/2

when the time, t  = 0

D = 24 m

When the object first reaches O

When the object reaches O, its final velocity, v = 0

v = dD/dt

v = 15 - t

0 = 15 - t

t = 15 mins

Speed of the particle after 3 minutes

v = 15 - t

v = 15 - 3

v = 12 m/min

v = 12 m/min x 1min/60s = 0.2 m/s

Thus, the particle's distance from O when it first started to move is 24 m.

The time when the particle first reaches O is 15 mins.

The particle's speed when it has been moving for 3 minutes is 0.2 m/s.

Learn more about speed here: https://brainly.com/question/6504879

#SPJ1

What is the volume of the cylinder?

Answers

The volume of a cylinder with a diameter of 16 feet and height of 10 feet is 2010.62 ft³

What is an equation?

An equation is an expression that shows the relationship between two or more numbers and variables.

The volume of a cylinder with radius (r) and height (h) is:

Volume = πr²h

Given that h = 10 ft, r = 16/2 = 8 ft

The volume = π * 8² * 10 = 2010.62 ft³

The volume of a cylinder with a diameter of 16 feet and height of 10 feet is 2010.62 ft³

Find out more on equation at: https://brainly.com/question/2972832

#SPJ1


The lengths of the sides of the right triangle above are a, 3, and c. What is a in terms of c?

Answers

The expression for a in terms of c is [tex]a^{2}= \sqrt{c^{2} -9}[/tex]. The correct option is the third option [tex]a^{2}= \sqrt{c^{2} -9}[/tex]

Pythagorean theorem

From the question, we are to determine the expression for a in terms of c

In the given right triangle, we can write that

[tex]c^{2} = a^{2} +3^{2}[/tex] (Pythagorean theorem)

Thus,

[tex]c^{2} = a^{2} +9[/tex]

[tex]a^{2}= c^{2} -9[/tex]

[tex]a^{2}= \sqrt{c^{2} -9}[/tex]

Hence, the expression for a in terms of c is [tex]a^{2}= \sqrt{c^{2} -9}[/tex]. The correct option is the third option [tex]a^{2}= \sqrt{c^{2} -9}[/tex]

Learn more on Pythagorean theorem here: https://brainly.com/question/23994492

#SPJ1

Suppose f(x)=2^x. What is the graph of g(x)=1/3f(x)?

Answers

Please see the blue curve of the image attached below to know the graph of the function g(x) = (1/3) · 2ˣ.

How to graph a transformed function

Herein we have an original function f(x). The transformed function g(x) is the result of compressing f(x) by 1/3. Then, we find that g(x) = (1/3) · 2ˣ. Lastly, we graph both function on a Cartesian plane with the help of a graphing tool.

The result is attached below. Please notice that the original function f(x) is represented by the red curve, while the transformed function g(x) is represented by the blue curve.

To learn more on functions: https://brainly.com/question/12431044

#SPJ1

in triangle ABC, AC=13, BC=84, and AB=85. find the measure of angle C.

Answers

The sides all satisfy the Pythagorean Theorem so it is a right triangle. I attached an image of how the triangle should look like and as you can see, the angle is 90 degrees or pi/2 radians.

in triangle ABC, AC=13, BC=84, and AB=85.  the measure of angle is C.5.1 degrees,

How can the angle be found?

Using the The Law of Cosines in any triangle which can be expressed as;

[tex]c^2 = a^2 + b^2 - 2ab * cos(C)[/tex]

Then if we expressed the given sides in the cosine formula we have

[tex]13^2 = 85^2 + 84^2 - 2 * 85 * 84 * cos(C)[/tex]

Then we have [tex]169 = 7225 + 7056 - 14280 * cos(C)[/tex]

[tex]14280 * cosC = (7225 + 7056 - 169)[/tex]

[tex]cosC = \frac{14212}{ 14280}[/tex]

cos 0.9947

[tex]C = cos^-1(0.9947)[/tex]

C = 5.1 degrees

Learn more about angle at;

https://brainly.com/question/25716982

#SPJ2

A random variable X has a gamma density function with parameters α= 8 and β = 2.
Without making any assumptions, derive the moment generating function of X and use to
determine the mean and variance of X.

Answers

I know you said "without making any assumptions," but this one is pretty important. Assuming you mean [tex]\alpha,\beta[/tex] are shape/rate parameters (as opposed to shape/scale), the PDF of [tex]X[/tex] is

[tex]f_X(x) = \dfrac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} = \dfrac{2^8}{\Gamma(8)} x^7 e^{-2x}[/tex]

if [tex]x>0[/tex], and 0 otherwise.

The MGF of [tex]X[/tex] is given by

[tex]\displaystyle M_X(t) = \Bbb E\left[e^{tX}\right] = \int_{-\infty}^\infty e^{tx} f_X(x) \, dx = \frac{2^8}{\Gamma(8)} \int_0^\infty x^7 e^{(t-2) x} \, dx[/tex]

Note that the integral converges only when [tex]t<2[/tex].

Define

[tex]I_n = \displaystyle \int_0^\infty x^n e^{(t-2)x} \, dx[/tex]

Integrate by parts, with

[tex]u = x^n \implies du = nx^{n-1} \, dx[/tex]

[tex]dv = e^{(t-2)x} \, dx \implies v = \dfrac1{t-2} e^{(t-2)x}[/tex]

so that

[tex]\displaystyle I_n = uv\bigg|_{x=0}^{x\to\infty} - \int_0^\infty v\,du = -\frac n{t-2} \int_0^\infty x^{n-1} e^{(t-2)x} \, dx = -\frac n{t-2} I_{n-1}[/tex]

Note that

[tex]I_0 = \displaystyle \int_0^\infty e^{(t-2)}x \, dx = \frac1{t-2} e^{(t-2)x} \bigg|_{x=0}^{x\to\infty} = -\frac1{t-2}[/tex]

By substitution, we have

[tex]I_n = -\dfrac n{t-2} I_{n-1} = (-1)^2 \dfrac{n(n-1)}{(t-2)^2} I_{n-2} = (-1)^3 \dfrac{n(n-1)(n-2)}{(t-2)^3} I_{n-3}[/tex]

and so on, down to

[tex]I_n = (-1)^n \dfrac{n!}{(t-2)^n} I_0 = (-1)^{n+1} \dfrac{n!}{(t-2)^{n+1}}[/tex]

The integral of interest then evaluates to

[tex]\displaystyle I_7 = \int_0^\infty x^7 e^{(t-2) x} \, dx = (-1)^8 \frac{7!}{(t-2)^8} = \dfrac{\Gamma(8)}{(t-2)^8}[/tex]

so the MGF is

[tex]\displaystyle M_X(t) = \frac{2^8}{\Gamma(8)} I_7 = \dfrac{2^8}{(t-2)^8} = \left(\dfrac2{t-2}\right)^8 = \boxed{\dfrac1{\left(1-\frac t2\right)^8}}[/tex]

The first moment/expectation is given by the first derivative of [tex]M_X(t)[/tex] at [tex]t=0[/tex].

[tex]\Bbb E[X] = M_x'(0) = \dfrac{8\times\frac12}{\left(1-\frac t2\right)^9}\bigg|_{t=0} = \boxed{4}[/tex]

Variance is defined by

[tex]\Bbb V[X] = \Bbb E\left[(X - \Bbb E[X])^2\right] = \Bbb E[X^2] - \Bbb E[X]^2[/tex]

The second moment is given by the second derivative of the MGF at [tex]t=0[/tex].

[tex]\Bbb E[X^2] = M_x''(0) = \dfrac{8\times9\times\frac1{2^2}}{\left(1-\frac t2\right)^{10}} = 18[/tex]

Then the variance is

[tex]\Bbb V[X] = 18 - 4^2 = \boxed{2}[/tex]

Note that the power series expansion of the MGF is rather easy to find. Its Maclaurin series is

[tex]M_X(t) = \displaystyle \sum_{k=0}^\infty \dfrac{M_X^{(k)}(0)}{k!} t^k[/tex]

where [tex]M_X^{(k)}(0)[/tex] is the [tex]k[/tex]-derivative of the MGF evaluated at [tex]t=0[/tex]. This is also the [tex]k[/tex]-th moment of [tex]X[/tex].

Recall that for [tex]|t|<1[/tex],

[tex]\displaystyle \frac1{1-t} = \sum_{k=0}^\infty t^k[/tex]

By differentiating both sides 7 times, we get

[tex]\displaystyle \frac{7!}{(1-t)^8} = \sum_{k=0}^\infty (k+1)(k+2)\cdots(k+7) t^k \implies \displaystyle \frac1{\left(1-\frac t2\right)^8} = \sum_{k=0}^\infty \frac{(k+7)!}{k!\,7!\,2^k} t^k[/tex]

Then the [tex]k[/tex]-th moment of [tex]X[/tex] is

[tex]M_X^{(k)}(0) = \dfrac{(k+7)!}{7!\,2^k}[/tex]

and we obtain the same results as before,

[tex]\Bbb E[X] = \dfrac{(k+7)!}{7!\,2^k}\bigg|_{k=1} = 4[/tex]

[tex]\Bbb E[X^2] = \dfrac{(k+7)!}{7!\,2^k}\bigg|_{k=2} = 18[/tex]

and the same variance follows.

To the nearest percent how much greater is 8 than 6

Answers

The percent greater of 8 than 6 to the nearest percent is 25%

Percentage

Percent greater = difference / higher chance value × 100

= 2/8 × 100

= 0.25 × 100

Percent greater = 25%

Therefore, the percent greater of 8 than 6 to the nearest percent is 25%

Learn more about percentage:

https://brainly.com/question/843074

#SPJ1

as part of a competition, diego must spin around in a circle 6 times and then run to a tree. the time he spends on each spin is represented by S AND THE TIME HE SPEND RUNNING is R. He gets to the tree 21 seconds after he starts spinning. If it takes diego 1.2 seconds to spin around each time, how many seconds did he spend running

Answers

The time he spent running is 13.80 seconds.

How much time did he spend running?

The equation that can be used to represent the time he gets to the tree is:

Time he gets to the tree = (time of each spin x total spins) + time he spent running

21 = (6 x 1.2) + r

21 = 7.20 + r

r = 21 - 7.20

r = 13.80 seconds

To learn more about mathematical equations, please check: https://brainly.com/question/26427570

#SPJ1

Which expression is equivalent to
xay
8
700
8√√√x
y
8√√y
Mark this and return
128x56
√ 2x75
? Assume x > 0 and y> 0.
Save and Exit

Answers

The equivalent expression of [tex]\sqrt{\frac{128x^5y^6}{2x^7y^5}}[/tex] is [tex]\frac{8\sqrt y}{x}[/tex]

How to determine the equivalent expression?

The expression is given as:

[tex]\sqrt{\frac{128x^5y^6}{2x^7y^5}}[/tex]

Divide 128 by 2

[tex]\sqrt{\frac{64x^5y^6}{x^7y^5}}[/tex]

Apply the law of indices to the variables

[tex]\sqrt{\frac{64y^{6-5}}{x^{7-5}}}[/tex]

Evaluate the differences

[tex]\sqrt{\frac{64y}{x^2}}[/tex]

Take the square root of 64

[tex]8\sqrt{\frac{y}{x^2}}[/tex]

Take the square root of x^2

[tex]\frac{8\sqrt y}{x}[/tex]

Hence, the equivalent expression of [tex]\sqrt{\frac{128x^5y^6}{2x^7y^5}}[/tex] is [tex]\frac{8\sqrt y}{x}[/tex]

Read more about equivalent expression at:

https://brainly.com/question/2972832

#SPJ1

Solve [tex]2 cosx=4cosx sin^2x[/tex]

Answers

There are four solutions for the trigonometric equation 2 · cos x = 4 · cos x · sin² x are x₁ = π/4 ± 2π · i, x₂ = 3π/4 ± 2π · i, x₃ = 5π/4 ± 2π · i and x₄ = 7π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex].

How to solve a trigonometric equation

In this problem we must simplify the trigonometric equation by both algebraic and trigonometric means and clear the variable x:

2 · cos x = 4 · cos x · sin² x

2 · sin² x = 1

sin² x = 1/2

sin x = ± √2 /2

There are several solutions:

x₁ = π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex]

x₂ = 3π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex]

x₃ = 5π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex]

x₄ = 7π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex]

There are four solutions for the trigonometric equation 2 · cos x = 4 · cos x · sin² x are x₁ = π/4 ± 2π · i, x₂ = 3π/4 ± 2π · i, x₃ = 5π/4 ± 2π · i and x₄ = 7π/4 ± 2π · i, [tex]i \in \mathbb{N}_{O}[/tex].

To learn more on trigonometric equations: https://brainly.com/question/27821667

#SPJ1

3 5/6 + 2 4/9 in its simplest form

Answers

Answer:

>>   [tex]6\frac{5}{18}[/tex]

Step-by-step explanation:

1) Add the whole numbers first.

[tex]5+\frac{5}{6} +\frac{4}{9}[/tex]

2) Find the Least Common Denominator (LCD) of [tex]\frac{5}{6} ,\frac{4}{9}[/tex] . In other words, find the Least Common Multiple (LCM) of [tex]6,9[/tex].

Method 1: By Listing Multiples

1. List the multiples of each number.

Multiples of 6 : 6, 12, 18, ...

Multiples of 9 : 9, 18, ...

2. Find the smallest number that is shared by all rows above. This is the LCM.

LCM = 18

3. Make the denominators the same as the LCD.

[tex]5+\frac{5\times 3}{6\times 3}+\frac{4\times 2}{9\times 2}[/tex]

4. Simplify. Denominators are now the same.

[tex]5+\frac{15}{18}+\frac{8}{18}[/tex]

5.  Join the denominators.

[tex]5+\frac{15+8}{18}[/tex]

6. Simplify.

[tex]5+\frac{23}{18}[/tex]

7. Convert [tex]\frac{23}{18}[/tex] to mixed fraction.

[tex]5+1\frac{5}{18}[/tex]

8. Simplify.

[tex]6\frac{5}{18}[/tex]

Decimal Form: 6.277778

Cheers.

The addition of 3 5/6 + 2 4/9  is 113/18

What is fraction?

The fractional bar is a horizontal bar that divides the numerator and denominator of every fraction into these two halves.

The number of parts into which the whole has been divided is shown by the denominator. It is positioned in the fraction's lower portion, below the fractional bar.How many sections of the fraction are displayed or chosen is shown in the numerator. It is positioned above the fractional bar in the upper portion of the fraction.

Given:

3 5/6 + 2 4/9

Now, writing it into normal fraction

3 5/6 + 2 4/9

= 23/ 6 + 22/9

= 23/6 x 3/3 + 22/9 x 2/2

= 69/ 18 + 44/18

= 113/18

Hence, the addition is 113/18

Learn more about fraction here:

https://brainly.com/question/10354322

#SPJ5

will give brainly .Which statements are true regarding undefinable terms in geometry? Check all that apply.


A point has no length or width.

A point indicates a location in a coordinate plane.

A plane has one dimension, length.

A line has a definite beginning and end.

A plane consists of an infinite set of lines.

A line consists of an infinite set of points.

Answers

The true statements about terms in geometry that are undefinable are;

A point has no length or widthA point indicates a location on the coordinate planeA line consists of an infinite set of points.A plane consists of an infinite set of points.

How can the true statements be found?

Three undefinable terms in geometry are;

1) Point

2) Line

3) Plane

The above terms do not have a formal definition but they can be described based on their properties.

The other geometric terms are defined based on the above undefinable terms.

A point can be described as a location in space that is dimensionless and can be specified on the coordinate plane as an ordered pairs (x, y).

True statements about a point are therefore;

A point has no length or widthA point indicates a location on the coordinate plane

A line is infinitely long, that has no beginning or end. It has one dimension, with no thickness or height.

Given that a point is dimensionless, a line can be considered a set of points.

A true statement is therefore;

A line consists of an infinite set of points.

A plane is a two dimensional geometric figure that have infinite length and width.

An infinite set of lines that forms a two dimensional figure can be used to describe a plane.

The true statement with regards to a plane is therefore;

A plane consists of an infinite set of points.

Learn more about undefinable terms in geometry here:

https://brainly.com/question/1706041

#SPJ1

What point is 2/3 of the distance from point A(3, 1) to point B(3, 19)?

What point is 2/3 of the distance from point A(3, 1) to point B(3, 19)?

(3, 13)

(9/3, 13)

(2, 12)

(3, 19)

Answers

Answer: (3, 13)

Step-by-step explanation:

If we let the point be P, then AP:BP=2:1.

[tex]P=\left(\frac{(2)(3)+(1)(3)}{2+1}, \frac{(2)(19)+(1)(1)}{2+1} \right)=(3, 13)[/tex]

i don’t understand!!!

Answers

Answer:  12/13

In other words, 12 goes in the top box and 13 goes in the bottom. The fraction slash sign is not part of either box.

===========================================================

Explanation:

Cosine is the ratio of adjacent over hypotenuse.

cos(angle) = adjacent/hypotenuse

For the reference angle X, the adjacent leg is 36 units long. It's the leg closest or touching angle X.

The hypotenuse is always the longest side. It is always opposite the 90 degree angle. The hypotenuse in this case is 39 units.

Therefore,

cos(X) = 36/39 = (12*3)/(13*3) = 12/13

A candy shop sells a box of chocolates for $30. It has $29 worth of chocolates plus $1 for the box. The box includes two kinds of candy: caramels and truffles. Lita knows how much the different types of candies cost per pound and how many pounds are in a box. She said,
If x is the number of pounds of caramels included in the box and y is the number of pounds of truffles in the box, then I can write the following equations based on what I know about one of these boxes:

x + y = 3
8x + 12y + 1 = 30

Assuming Lita used the information given and her other knowledge of the candies, use her equations to answer the following:

How many pounds of candy are in the box?

What is the price per pound of the caramels

What does the term 12y in the second equation represent?

What does 8x + 12y + 1 in the second equation represent?

Answers

Answer:

There are 3 lbs of candy in the box.

The caramels are $8 per pound.

12y represents the total cost of truffles in the box.

8x + 12y + 1 represents the cost of caramels in the box + the cost of truffles in the box + the cost of the box.

Step-by-step explanation:

x = the number of pounds of caramels

y = the number of pounds of truffles

x + y = total lbs. and we know x + y = 3

We know x is the number of pounds of caramels.

8x = (cost per pound of caramels) × (number of pounds of caramels)

So 8 = cost of caramels

We know y = number of pounds of truffles. So 12 is the cost of truffles by pound, and 12y is the total cost of truffles in the box.

Based on all the above,

The cost of caramels in the box + the cost of truffles in the box + the cost of the box is = total cost of the box. 8x + 12y + 1 = 30

look at the pictures​

Answers

The key feature that the function of f(x) and g(x) has in common is the domain.

What is the domain and range of a function?

The domain of a function is the set of input or argument values for which the function is valid and well defined. The range is the set of the dependent variable for which a function is defined.

From the given information, we are to find the domain, range, x-intercept, and, y-intercept of the given equation:

[tex]\mathbf{f(x) = -4^x+5}[/tex]

[tex]\mathbf{g(x) = x^3 +x^2 -4x+5}[/tex]

For [tex]\mathbf{f(x) = -4^x+5}[/tex];

The domain of a function [tex]\mathbf{-4^x+5}[/tex] has no undefined points or constraints. Thus, the domain is -∞ < x < ∞.

The range f(x) < 5. The x-intercepts, when y is zero = [tex]\mathbf{(\dfrac{In(5)}{2In(2)},0)}[/tex]The y-intercepts; when x is zero = (0,4)

For [tex]\mathbf{g(x) = x^3 +x^2 -4x+5}[/tex]

The domain of a function [tex]\mathbf{g(x) = x^3 +x^2 -4x+5}[/tex] has no undefined points or constraints. Thus, the domain is -∞ < x < ∞.

The range  -∞ < f(x) < ∞. The x-intercepts, when y is zero = (-2.939, 0)The y-intercepts; when x is zero = (0,5)

Learn more about the domain and range of a function here;

https://brainly.com/question/26098895

#SPJ1


Given the functions a(x) = 3x - 12 and b(x) = x-9, solve a[b(x)].

Oa[b(x)] = 3x²-21

O a[b(x)] = 3x² - 39

Oa[b(x)] = 3x - 21

Oa[b(x)] = 3x - 39

Answers

Answer:

Step-by-step explanation:

hello :

a(x) = 3x - 12 and b(x) = x-9, so

a[b(x)]=a(x-9) =3(x-9)-12

a[b(x)]=3x-9-12

a[b(x)]=3x+21

Simplify the following
Answer is 6​

Answers

Firstly changing mixed fraction.

[tex] \frac{3}{2} - \frac{5}{4} + \frac{23}{4} [/tex]

By taking the LCM

[tex] \frac{6 - 5 + 23}{4} [/tex]

-5 + 23 (-) (+) = (-)

[tex] \frac{6 + 18}{4} [/tex]

[tex] \frac{24}{4} [/tex]

[tex]6[/tex]

Hope it helps you, any confusions you may ask!

Answer:

6 (work below)

Step-by-step explanation:

1 1/2 = 3/2

1 1/4 = 5/4

5 3/4 = 23/4

The least common multiple of the denominators is 4, so 3/2 will become 6/4.

6/4 - 5/4 = 1/4 + 23/4 = 24/4 = 6

Brainliest, please :)

could anyone help me with this?

Answers

Answer:

Step-by-step explanation:

A=6x²

[tex]\frac{dA}{dt} =6\times 2x \times \frac{dx}{dt} \\\frac{dA}{dt}=12x \frac{dx}{dt}[/tex]

Hi I would like to know how I can solve this problem.

Answers

The [tex]n[/tex]-th term is

[tex]U_n = \dfrac14 n^2 (n+1)^2[/tex]

so the 39th term is

[tex]U_{39} = \dfrac14 39^2 40^2 = \boxed{608,400}[/tex]

Observe that

[tex]2^3 + 4^3 + 6^3 = 2^3 + 2^3\times2^3 + 2^3\times3^3 = 8\left(1^3+2^3+3^3)[/tex]

which suggests that

[tex]V_n = 8U_n = \boxed{2n^2(n+1)^2}[/tex]

What is the solution to the following system of equations?
x-3y=6
2x + 2y = 4
(-1,3)
(3,-1)
(1, -3)
(-3,1)

Answers

Answer:

  (b)  (3,-1)

Step-by-step explanation:

One can determine the correct answer by checking to see if it satisfies the equations.

Checking

The first equation can be rewritten to ...

  x = 6 +3y . . . . . . . add 3y to both sides

This makes it easier to check answer choices:

  a) -1 = 6 +3(3) . . . . no

  b) 3 = 6 +3(-1) . . . . yes . . . . . (3, -1) is the solution

  c) 1 = 6 +3(-3) . . . . no

  d) -3 = 6 +3(1) . . . . no

__

Additional comment

We can further convince ourselves this is the correct choice by seeing if it satisfies the second equation:

  2x +2y = 4 . . . for (x, y) = (3, -1)

  2(3) +2(-1) = 4 . . . . yes

a 300-acre farm produced 20,000 bushels of corn last year. what is the minimum rate of production, in bushels per acre, that is needed this year, so the farm's two-year production total will be at least 49,100 bushels of corn?

Answers

The minimum production rate of bushels per acre of corn needed this year is 97 for two year's production to reach the goal of 49,100.

How to calculate the minimum production rate?

To calculate the minimum production rate for this year, we must subtract the production rate of the previous year, with what is expected to be obtained this year.

49,100 - 20,000 = 29,100

Then we must divide the minimum that must be obtained by the total area, by the 300 acres that we have, to know how much corresponds to each acre.

29,100 ÷ 300 = 97

According to the above, each acre must produce 97 bushels of corn to reach the goal of 49,100 for both years.

Learn more about production rate in: https://brainly.com/question/15043824

#SPJ1

Alan is building a garden shaped like a rectangle with a semicircle attached to one short side. If he has 70 feet of fencing to go around​ it, what dimensions will give him the maximum area in the​ garden? Round the answers to the nearest tenth.

Answers

The dimension that would give the maximum area is 20.8569

How to solve for the maximum area

Let the shorter side be = x

Perimeter of the semi-circle is πx

Twice the Length of the longer side

[tex][70-(\pi )x -x][/tex]

Length = [tex][70-(1+\pi )x]/2[/tex]

Total area =

area of rectangle + area of the semi-circle.

Total area =

[tex]x[[70-(1+\pi )x]/2] + [(\pi )(x/2)^2]/2[/tex]

When we square it we would have

[tex]70x +[(\pi /4)-(1+\pi)]x^2[/tex]

This gives

[tex]70x - [3.3562]x^2[/tex]

From here we divide by 2

[tex]35x - 1.6781x^2[/tex]

The maximum side would be at

[tex]x = 35/2*1.6781[/tex]

This gives us 20.8569

Read more on areas and dimensions here:

https://brainly.com/question/19819849

#SPJ1

Other Questions
An inexperienced accountant for Stahr Company made the following errors in recording merchandising transactions.A $210 refund to a customer for faulty merchandise was debited to Sales revenue $210 and credited to Cash $210.A $180 credit purchase of supplies was debited to inventory $180 and credited to Cash $180.A $215 sales discount was debited to Sales RevenueA cash payment of $20 for freight on merchandise purchase was debited to Freight-out $200 and credited to Cash $200InstructionsPrepare separate correcting entries for each error, assuming that the incorrect entry is not reversed. The theory of aging that posits that aging is caused either by the accumulation of deleterious mutations later in life or by a trade-off between repair to damaged tissues and reproduction is called the _____. A manufacturer produces a commodity where the length of the commodity has approximately normal distribution with a mean of 13.2 inches and standard deviation of 2.3 inches. If a sample of 37 items are chosen at random, what is the probability the sample's mean length is greater than 12.1 inches? Round answer to four decimal places. The velocity of a particle moving horizontally along the x -axis is given by v(t) = t sin?(5t) fort > 0. At t = 2 is the particle speeding up or slowing down? Explain. what are the four commonly cited factors that explain why african americans and latinos have lower educational attainment? write a Python program with One main function and Two sub-functions that display text strings.Step 1.Write a function called indent( . ) that indents a string by a certain number of spaces.The function:accepts 2 arguments: a string and the number of spaces.returns nothing (no output)prints the string after printing the specified number of spaces.Make sure to have a docstring to describe the function; please see requirement below.Test your function by running the script and then type the following test cases:>>> indent( "Hello", 0 )Hello>>> indent( "Hi", 5 )HiStep 2.Write a function called center( . ) that centers a string with respect to the screen width. The screen width is how many characters can fit across the screen. You can assume that the string length will be less than the screen width.The function:accepts 2 arguments: a text string and a screen widthprints the text string in the center of the screen. This should be done by calling the indent() function, gotten from step 1 above, to indent by the appropriate number of spaces; i.e. composition.returns the number of indentation spacesMake sure to have a docstring to describe the function; please see requirement below.Step 3.Write a main function called read_n_center_text(), or another name you deem appropriate, that interacts with the user to print text strings that are centered.This main function:prompts the user for a text string and then prompts the user for a screen widthcalls the center( . ) function, with the keyboard inputs as argumentsreceive the return value from center( . ) and prints the number of indentationHere's an example output:Type Text String: my lucky number is 888Enter Screen Width: 80my lucky number is 888Indented by 29 white spaces consider the following firms short run supply curves. what of the following is true regarding production in the short run?a.The firm is breaking even so is indifferent between shutting down or producing.b.The firm is profitable and should continue to produce.c.The firm should continue to produce even though they are making a loss.d.The firm should shut down because they are making a loss. During a laboratory experiment, a 3. 81-gram sample of NaHCO3 was thermally decomposed. In this experiment, carbon dioxide and water vapors escape and are combined to form carbonic acid. After decomposition, the sample weighed 2. 86 grams. Calculate the percentage yield of carbonic acid for the reaction. Describe the calculation process in detail. (10 points) NaHCO3 Na2CO3 + H2CO3 Currently, most kinship findings support a __________ role for heredity in __________. Group of answer choices moderate; intelligence strong; intelligence weak; personality strong; anxiety Which transitional word or phrase would best be used to show a shift in location? an inclined plane rises to a height of 2m over a distance of 6m.calculate If you were to sticka needle laterallythrough theabdomen, in whatlayers would youenter fromsuperficial to deep? A 18 kg child slides down a 4.0 m-high playground slide. She starts from rest, and her speed at the bottom is 2.8 m/s. What is the change in the thermal energy of the slide and the seat of her pants? 2. A random variable is normally distributed with a mean of u = 50 and a standard deviation of a = 5. a. Sketch a normal curve for the probability density function. Label the horizontal axis with values of 35, 40, 45,50, 55, 60, and 65. b. What is the probability that the random variable will assume a value between 45 and 55? Empirical Rule. c. What is the probability that the random variable will assume a value between 40 and 60? Empirical Rule. d. What is the probability that the random variable will assume a value between 35 and 65? Empirical Rule. e. What is the probability that the random variable will assume a value 60 or more?f. What is the probability that the random variable will assume a value between 40 and 55?g. What is the probability that the random variable will assume a value between 35 and 40? consider the following reaction: 2 PbO (s) 2 SO2 (g)2 PbS (s) +30 (g) 7 of 7 can be calculated from ?62 values that ?G m" ressures of the gases are as follows: 780.8 kJ Calculate dG at 298 K when the SO2: 120 atm o 3.1 x 10 atm a. +916 kJ b. +646 k c. +732 k d. +722 kJ e. -916 kJ The arrows in the diagram show the direction of the magnetic fields of the atoms that make up a certain material. Which object could the diagram represent ? A. A steel nail B. A refrigerator magnet C. A wooden log D. An iron bar In C++, please program this. calculate the relative frequency p(e) using the given information. n = 400, fr(e) = 200 Ch-Sup01 Determine 60.H7/p6a. If this fit specification is shaft based or hole based. b. If this is a clearance, transitional or interference fit. c. Using ASME B4.2, find the hole and shaft sizes with upper and lower limits. the volume of oxygen adjusted to stp using the combined gas law