a charge 2.5 nc is placed at (2,3,2) m and another charge 4.9 nc is placed at (3,-3,0) m. what is the electric field at (3,1,3) m?

Answers

Answer 1

The electric field at the point (3,1,3) m is 0.424 i - 1.667 j + 1.057 k N/C.

When two charged particles are placed in space, they create an electric field that exerts a force on any other charged particle that enters that field. The electric field is a vector field that represents the force per unit charge at each point in space. To calculate the electric field at a specific point in space, we need to consider the contributions from each of the charged particles, which can be determined using Coulomb's law.

In this case, we have two charged particles with magnitudes of 2.5 nC and 4.9 nC located at positions (2,3,2) m and (3,-3,0) m, respectively. We want to calculate the electric field at the point (3,1,3) m.

The electric field at a point in space due to a point charge can be calculated using Coulomb's law:

E = k*q/r^2 * r_hat

where E is the electric field vector, k is Coulomb's constant (9 x 10⁹ N m²/C²), q is the charge of the particle creating the electric field, r is the distance from the particle to the point in space where the electric field is being calculated, and r_hat is a unit vector pointing from the particle to the point in space.

To calculate the total electric field at the point (3,1,3) m due to both charges, we need to calculate the electric field contribution from each charge and add them together as vectors.

Electric field contribution from the first charge:

r1 = √((3-2)² + (1-3)² + (3-2)²) = √(11)

r1_hat = [(3-2)/√(11), (1-3)/√(11), (3-2)/√(11)]

E1 = k*q1/r1² * r1_hat = (9 x 10⁹N m²/C²) * (2.5 x 10⁻⁹ C)/(11 m²) * [(1/√(11)), (-2/√(11)), (1/√(11))] = [0.424 i - 0.849 j + 0.424 k] N/C

Electric field contribution from the second charge:

r2 = √((3-3)² + (1-(-3))² + (3-0)²) = sqrt(19)

r2_hat = [(3-3)/√(19), (1-(-3))/√(19), (3-0)/√(19)] = [0.000 i + 0.789 j + 0.615 k]

E2 = k*q2/r2² * r2_hat = (9 x 10⁹ N m^2/C²) * (4.9 x 10⁻⁹ C)/(19 m²) * [0.000 i + 0.789 j + 0.615 k] = [0 i + 0.818 j + 0.633 k] N/C

Therefore, the total electric field at the point (3,1,3) m is:

E_total = E1 + E2 = [0.424 i - 1.667 j + 1.057 k] N/C

So the electric field at the point (3,1,3) m is 0.424 i - 1.667 j + 1.057 k N/C.

Learn more about electric field at: https://brainly.com/question/19878202

#SPJ11


Related Questions

A point charge q1 = 3.75 nC is located on the x-axis at x = 2.30 m , and a second point charge q2 = -6.35 nC is on the y-axis at y = 1.30 m .
A) What is the total electric flux due to these two point charges through a spherical surface centered at the origin and with radius r1 = 0.440 m ?
B) What is the total electric flux due to these two point charges through a spherical surface centered at the origin and with radius r2 = 1.50 m ?
C) What is the total electric flux due to these two point charges through a spherical surface centered at the origin and with radius r3 = 3.00 m ?

Answers

A) The total electric flux through a spherical surface with radius r1 = 0.440 m is zero.

B) The total electric flux through a spherical surface with radius r2 = 1.50 m is approximately -2.6 x 10^11 N·m²/C.

C) The total electric flux through a spherical surface with radius r3 = 3.00 m is zero.

To calculate the total electric flux through a spherical surface centered at the origin, we can use Gauss's Law:

A) For a spherical surface with a radius r1 = 0.440 m:

The total electric flux is zero since none of the charges q1 and q2 lie within this spherical surface.

B) For a spherical surface with a radius r2 = 1.50 m:

The total electric flux is given by the formula:

Φ = (q1 + q2) / ε₀

where ε₀ is the permittivity of free space (ε₀ ≈ 8.85 x 10^-12 C²/N·m²).

Substituting the values:

Φ = (3.75 nC - 6.35 nC) / (8.85 x 10^-12 C²/N·m²)

Φ = -2.6 x 10^11 N·m²/C

C) For a spherical surface with a radius r3 = 3.00 m:

Similar to case A, the charges q1 and q2 do not lie within this spherical surface, so the total electric flux is zero.

Learn more about electric here:

https://brainly.com/question/12990974

#SPJ11

a frictionless cart attached to a spring vibrates with amplitude a.part complete determine the position of the cart when its kinetic energy equals its elastic potential energy.

Answers

When the kinetic energy of the cart equals its elastic potential energy, the position of the cart is +/- a, depending on the direction of motion.

When the kinetic energy of the cart equals the elastic potential energy of the spring, we have:
1/2 k a^2 = 1/2 m v^2

where k is the spring constant, m is the mass of the cart, a is the amplitude of vibration, and v is the velocity of the cart.
Using the conservation of energy, we know that the total mechanical energy of the system is constant. Thus, when the kinetic energy equals the elastic potential energy, the total mechanical energy is:
1/2 k a^2
At this point, the cart is at its maximum displacement from the equilibrium position, which is:
x = +/- a
where x is the position of the cart relative to the equilibrium position.
Therefore, when the kinetic energy of the cart equals its elastic potential energy, the position of the cart is +/- a, depending on the direction of motion.
To know more about displacement visit:

https://brainly.com/question/30087445

#SPJ11

red light has a longer wavelength than violet light. which has more energy? they have the same not enough information violet red

Answers

Compared to violet light, red light has a longer wavelength. Energy and wavelength in the electromagnetic spectrum are inversely connected.

The energy diminishes with increasing wavelength. As a result, violet light, which has a shorter wavelength than red light, is more energetic. E = hv, where E is energy, h is Planck's constant and is frequency, states that the energy of light is directly proportionate to its frequency and that frequency is inversely related to wavelength. Violet light has more energy per photon than red light since it has a higher frequency and shorter wavelength. The energy of violet light is more than that of red light.

To know more about electromagnetic spectrum, here

brainly.com/question/23727978

#SPJ4

A uniform rod AB of mass m and length l is at rest on a smooth horizontal surface. An impulse J is applied to the end B, perpendicular to the rod in the horizontal direction. Find the speed of particle P at a distance 1/6 from the centre towards A of the rod after time t = πml/12J

.

Answers

The speed of particle P at a distance 1/6 from the center towards A of the rod, after time t = πml/12J, is v = (π/6)J/(ml).

The given time is t = πml/12J. We'll use this equation to find the speed of particle P.

Let's consider the moment of impulse J applied at B. According to the principle of conservation of angular momentum, the angular momentum of the system about the center of mass remains constant.

Initially, the rod is at rest, so the initial angular momentum is zero.

After the impulse J is applied at B, the rod starts rotating about its center of mass. Let v be the speed of particle P at a distance 1/6 from the center towards A.

The angular momentum of the system can be calculated as the sum of the angular momentum of the rod and the angular momentum of particle P.

The angular momentum of the rod can be calculated as Iω, where I is the moment of inertia of the rod about its center of mass and ω is the angular velocity.

The angular momentum of particle P is given by (m/6)(l/6)v, where m is the mass of the rod and l is its length.

Setting up the conservation of angular momentum equation:

0 + (m/6)(l/6)v = Iω

The moment of inertia of a rod about its center of mass is given by I = (1/12)mL², where L is the total length of the rod.

Substituting the value of I and ω = v/(l/6) into the conservation of angular momentum equation:

0 + (m/6)(l/6)v = (1/12)mL²(v/(l/6))

Simplifying the equation:

(m/36)v = (1/12)L²(v/(l/6))

Canceling out common terms:

v = (1/3)L²/(l/6)

L² = l² + (1/6)²l², as the distance from the center to the end is l/2, and the distance from the center to the desired point is (l/6) + (l/2) = (5l/6).

Substituting the value of L²:

v = (1/3)[l² + (1/6)²l²]/(l/6)

Simplifying the equation:

v = (1/3)[(36/36)l² + (1/36)l²]/(l/6)

Further simplification:

v = (1/3)[(37/36)l²]/(l/6)

Canceling out common terms:

v = (37/3)(l/6)

Simplifying further:

v = (37/18)l

The given distance is 1/6 from the center towards A, so the distance from the center to particle P is (1/6)l.

Substituting the value of l/6:

v = (37/18)(l/6)

Finally, simplifying the equation:

v = (π/6)J/(ml)

For more such questions on speed, click on:

https://brainly.com/question/13943409

#SPJ11

the coefficient of linear expansion of iron is 10–5 per c°. the volume of an iron cube, 5.6 cm on edge. how much will the volume increase if it is heated from 8.4°c to 68.1°c? answer in cm3.

Answers

The volume of the iron cube will increase by approximately 0.313 cm³ when heated from 8.4°C to 68.1°C.To solve this problem, we need to use the formula for volume expansion due to temperature change:
ΔV = V₀αΔT


Where ΔV is the change in volume, V₀ is the initial volume, α is the coefficient of linear expansion, and ΔT is the change in temperature.
First, let's calculate the initial volume of the iron cube:
V₀ = a³
V₀ = 5.6³
V₀ = 175.616 cm³
Next, let's calculate the change in temperature:
ΔT = T₂ - T₁
ΔT = 68.1 - 8.4
ΔT = 59.7 c°
Now we can calculate the change in volume:
ΔV = V₀αΔT
ΔV = 175.616 * 10^-5 * 59.7
ΔV = 0.1049 cm³
Therefore, the volume of the iron cube will increase by 0.1049 cm³ if it is heated from 8.4°c to 68.1°c.

The coefficient of linear expansion of iron is 10–5 per c°. The volume of an iron cube, 5.6 cm on edge. How much will the volume increase if it is heated from 8.4°c to 68.1°c? To solve this problem, we need to use the formula for volume expansion due to temperature change. First, we calculate the initial volume of the iron cube which is V₀ = a³ = 5.6³ = 175.616 cm³. Next, we calculate the change in temperature which is ΔT = T₂ - T₁ = 68.1 - 8.4 = 59.7 c°. Using the formula ΔV = V₀αΔT, we can calculate the change in volume which is ΔV = 175.616 * 10^-5 * 59.7 = 0.1049 cm³. Therefore, the volume of the iron cube will increase by 0.1049 cm³ if it is heated from 8.4°c to 68.1°c.

To know more about volume visit :-

https://brainly.com/question/14996332

#SPJ11

An element in its solid phase has mass density 1750kg/m3 and number density 4. 39 × 1028 atoms/m3. What is the element’s atomic mass number?

Answers

The atomic mass number of the element is approximately 70. The mass density of a substance is defined as the mass per unit volume, while the number density is defined as the number of atoms per unit volume.

In order to determine the atomic mass number of the element, we need to understand the relationship between these two quantities. The mass density can be calculated using the formula:

[tex]\[ \text{Mass density} = \text{Atomic mass} \times \text{Number density} \times \text{Atomic mass unit} \][/tex]

Where the atomic mass unit is equal to the mass of one atom. Rearranging the formula, we can solve for the atomic mass:

[tex]\[ \text{Atomic mass} = \frac{\text{Mass density}}{\text{Number density} \times \text{Atomic mass unit}} \][/tex]

Substituting the given values, we find:

[tex]\[ \text{Atomic mass} = \frac{1750 \, \text{kg/m}^3}{4.39 \times 10^{28} \, \text{atoms/m}^3 \times \text{Atomic mass unit}} \][/tex]

The atomic mass unit is defined as one-twelfth the mass of a carbon-12 atom, which is approximately [tex]\(1.66 \times 10^{-27}\) kg[/tex]. Plugging in this value, we can solve for the atomic mass:

[tex]\[ \text{Atomic mass} = \frac{1750 \, \text{kg/m}^3}{4.39 \times 10^{28} \, \text{atoms/m}^3 \times 1.66 \times 10^{-27} \, \text{kg}} \][/tex]

Calculating this expression gives us the atomic mass number of approximately 70 for the given element.

To learn more about density refer:

https://brainly.com/question/1978192

#SPJ11

suppose 1.00 kg of water at 41.5° c is placed in contact with 1.00 kg of water at 21° c.What is the change in energy (in joules) of the hot water due to the heat transfer when it is placed in contact with the cold water and allowed to reach equilibrium?Qh =- 36627 Qh =-36630

Answers

The change in energy (in joules) of the hot water due to the heat transfer when it is placed in contact with the cold water and allowed to reach equilibrium is -15,464 J.

The change in energy (in joules) of the hot water due to the heat transfer when it is placed in contact with the cold water and allowed to reach equilibrium can be calculated using the equation

Q = mcΔT

Where Q is the heat transferred, m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature of the water.

For the hot water

m = 1.00 kg

c = 4,186 J/(kg·°C) (specific heat capacity of water)

ΔT = 41.5°C - Teq

Where Teq is the equilibrium temperature of the two bodies.

For the cold water

m = 1.00 kg

c = 4,186 J/(kg·°C) (specific heat capacity of water)

ΔT = Teq - 21°C

Because the heat transfer is from the hot water to the cold water, the magnitude of the heat transferred will be the same for both bodies. Therefore

mcΔT = mcΔT

(1.00 kg)(4,186 J/(kg·°C))(41.5°C - Teq) = (1.00 kg)(4,186 J/(kg·°C))(Teq - 21°C)

Simplifying this equation, we get

83.7 J/°C = Teq - 21°C + Teq - 41.5°C

Combining like terms, we get

2Teq - 62.5°C = 83.7 J/°C

Solving for Teq, we get

Teq = (83.7 J/°C + 62.5°C)/2

Teq = 73.1°C

Therefore, the change in energy (in joules) of the hot water due to the heat transfer when it is placed in contact with the cold water and allowed to reach equilibrium is

Qh = mcΔT = (1.00 kg)(4,186 J/(kg·°C))(41.5°C - 73.1°C) = -15,464 J

(Note that the negative sign indicates that the hot water loses energy, as expected.)

To know more about change in energy here

https://brainly.com/question/31384081

#SPJ4

a uniform electric field is set up between 2 parallel plates of a capacitor at a potential difference of 200 v. the distance between the 2 plates is .5 cm. what is the magnitude of the electric field between the two plates

Answers

The magnitude of the electric field between the two parallel plates of a capacitor can be calculated using the formula E = V/d, where E is the electric field, V is the potential difference, and d is the distance between the plates. E = 200 V / 0.5 cm = 400 V/cm. The magnitude of the electric field between the two parallel plates of the capacitor is 400 V/cm.

This means that for every centimeter of distance between the plates, the electric field strength is 400 volts. It is important to note that the electric field is uniform between the plates, meaning that it has the same magnitude and direction at every point between the plates. This is due to the fact that the plates are parallel and the potential difference is constant, creating a constant electric field between them. Understanding the behavior of electric fields is important in many fields of study, including physics, electrical engineering, and telecommunications.

Learn more about electric field here:-

https://brainly.com/question/11482745

#SPJ11

alculate the angle in degrees at which a 2.20 µm wide slit produces its first minimum for 410 nm violet light. enter your result to the nearest 0.1°.

Answers

Therefore, the angle at which a 2.20 m-wide slit produces its first minimum for 410 nm violet light is 10.8° to the nearest 0.1°.

The formula for calculating the angle at which a first minimum is produced in a single-slit diffraction pattern is:
sinθ = λ / (d * n)
where θ is the angle, λ is the wavelength of the light, d is the width of the slit, and n is the order of the minimum (in this case, n = 1).
Plugging in the values given in the question, we get:
sinθ = 410 nm / (2.20 µm * 1)
Note that we need to convert the units of either the wavelength or the slit width to ensure they are in the same units. We'll convert the wavelength to µm:
sinθ = 0.41 µm / 2.20 µm
sinθ = 0.18636
Now we can take the inverse sine of this value to find θ:
θ = sin^-1(0.18636)
θ = 10.77°
Therefore, the angle at which a 2.20 µm wide slit produces its first minimum for 410 nm violet light is 10.8° to the nearest 0.1°.

To know more about violet light visit:-

https://brainly.com/question/11879525

#SPJ11

How many photons are contained in a flash of violet light (425 nm) that contains 140 kj of energy?

Answers

There are approximately [tex]2.998 * 10^{25[/tex] photons in a flash of violet light with a wavelength of 425 nm and containing 140 kJ of energy.

The energy of a single photon can be calculated using the following formula:

E = hc/λ

where E is the energy of the photon, h is Planck's constant ([tex]6.626 *10^{-34[/tex]J s), c is the speed of light [tex](2.998 * 10^8 m/s)[/tex], and λ is the wavelength of the light in meters.

To find the number of photons in a flash of violet light containing 140 kJ of energy, we first need to calculate the energy of a single photon with a wavelength of 425 nm:

E = hc/λ = [tex](6.626 * 10^{-34 }J s) * (2.998 * 10^{8} m/s) / (425 * 10^{-9} m)[/tex]

E = [tex]4.666 * 10^{-19} J[/tex]

Next, we can find the number of photons by dividing the total energy by the energy of a single photon:

Number of photons = Total energy / Energy of a single photon

Number of photons =[tex]140 * 10^3 J / 4.666 * 10^{-19} J[/tex]

Number of photons = [tex]2.998 * 10^{25}[/tex] photons

To know more about photon refer here

https://brainly.com/question/29415147#

#SPJ11

How and why does the air parcel change? When does this change stop?

Answers

Explanation:

Air parcels can change as they move through the atmosphere due to a variety of factors, including changes in temperature, pressure, and moisture content. These changes can cause the air parcel to expand or contract, which in turn affects its density and buoyancy.

For example, if an air parcel rises and encounters lower pressure, it will expand due to the reduced external pressure and cool adiabatically, meaning without exchanging heat with its surroundings. Alternatively, if an air parcel descends and encounters higher pressure, it will be compressed and warm adiabatically. As the parcel rises or descends, it can also encounter regions with different moisture content, which can cause it to gain or lose water vapor through processes such as condensation or evaporation.

The changes to the air parcel will continue until it reaches a state of equilibrium with its surrounding environment. For example, if the temperature and moisture content of the air parcel become equal to those of the surrounding air, it will stop changing and become part of the larger air mass. However, if the air parcel continues to experience differences in temperature, pressure, or moisture content, it may continue to change as it moves through the atmosphere.

Answer:

air parcel change because of the air pressure surrounding the parcel.

calculate the moment of inertia in kg⋅m2 of the meter stick if the pivot point p is at the 0-cm mark d = 0 cm.

Answers

The moment of inertia of the meter stick at the pivot point is 0.006 kg⋅m².

What is the moment of inertia at the pivot point of the meter stick?

The moment of inertia is a property of a physical object that measures its resistance to rotational motion. In this case, we are calculating the moment of inertia of a meter stick with the pivot point (denoted as point P) located at the 0-cm mark.

To determine the moment of inertia, we need to consider the mass distribution of the meter stick. The moment of inertia formula for a thin rod rotating about an axis perpendicular to its length is given by:

I = (1/3) * m * L²

Where I represents the moment of inertia, m is the mass of the meter stick, and L is the length of the meter stick.

In this scenario, since the pivot point is at the 0-cm mark, the distance from the pivot point to any point on the meter stick is simply the length of that point. Considering the meter stick has a length of 1 meter (L = 1), we can substitute the values into the formula:

I = (1/3) * m * (1)²

I = (1/3) * m

Given that the mass of a meter stick is approximately 0.018 kg, we can calculate the moment of inertia:

I = (1/3) * 0.018 kg

I ≈ 0.006 kg⋅m²

Thus, the moment of inertia of the meter stick at the pivot point is approximately 0.006 kg⋅m².

Learn more about inertia

brainly.com/question/3268780

#SPJ11

the first bright fringe of an interference pattern occurs at an angle of 14.0° from the central fringe when a double slit is illuminated by a 416-nm blue laser. what is the spacing of the slits?

Answers

When a double slit is illuminated by a 416-nm blue laser, the spacing of the slits in the double-slit experiment is approximately 1703.3 nm.

To calculate the spacing of the slits in a double-slit interference pattern, we can use the formula:

sin(θ) = (mλ) / d

where θ is the angle of the bright fringe, m is the order of the fringe (m=1 for the first bright fringe), λ is the wavelength of the light, and d is the spacing between the slits. We are given the angle (14.0°) and the wavelength (416 nm), so we can solve for d:

sin(14.0°) = (1 * 416 nm) / d

To isolate d, we can rearrange the formula:

d = (1 * 416 nm) / sin(14.0°)

Now we can plug in the values and calculate the spacing of the slits:

d ≈ (416 nm) / sin(14.0°) ≈ 1703.3 nm

Therefore, the spacing of the slits in the double-slit experiment is approximately 1703.3 nm.

More on double-slit experiment: https://brainly.com/question/17167949

#SPJ11

The spacing of the slits if the first bright fringe of an interference pattern occurs at an angle of 14.0° from the central fringe when a double slit is illuminated by a 416-nm blue laser is approximately 1.7 × 10⁻⁶ meters.

To find the spacing of the slits when the first bright fringe of an interference pattern occurs at an angle of 14.0° from the central fringe and is illuminated by a 416-nm blue laser, follow these steps:

1. Use the double-slit interference formula: sin(θ) = (mλ) / d, where θ is the angle of the fringe, m is the order of the fringe (m = 1 for the first bright fringe), λ is the wavelength of the laser, and d is the spacing between the slits.

2. Plug in the known values: sin(14.0°) = (1 × 416 × 10⁻⁹ m) / d.

3. Solve for d: d = (1 × 416 × 10⁻⁹  m) / sin(14.0°).

4. Calculate the result: d ≈ 1.7 × 10⁻⁶ m.

Thus, the spacing of the slits is approximately 1.7 × 10⁻⁶ meters.

Learn more about slits: https://brainly.com/question/30890401

#SPJ11

a spherical solid, centered at the origin, has radius 100 and mass density \delta(x,y,z)=104 -\left(x^2 y^2 z^2\right). find its mass.

Answers

The mass of the spherical solid is approximately 3.50 × 10⁷ units of mass (assuming units of mass are not specified in the question).

To find the mass of the spherical solid, we need to integrate the given mass density function over the volume of the sphere. Using spherical coordinates, we have:

m = ∫∫∫ δ(x,y,z) dV= ∫∫∫ (10^4 - x² y² z²) dV= ∫0²π ∫0^π ∫0¹⁰⁰ (10⁴ - r⁴ sin²θ cos²θ) r² sinθ dr dθ dφ= 4π ∫0¹⁰⁰ (10⁴r² - r⁶/3) dr= (4/3)π (10⁴r³ - r⁷/21)|0¹⁰⁰= (4/3)π [(10¹⁰ - 10⁷/3)]≈ 3.50 × 10⁷ units of mass.

Therefore, the mass of the spherical solid is approximately 3.50 × 10⁷ units of mass.

To learn more about mass density, here

https://brainly.com/question/6107689

#SPJ4

A swimmer resting on a raft notices 12 wave crests pass him in 18 s. The distance between one crest and the next crest is 2.6 m. Find: (a) frequency (b) velocity of the waves? c) period? d) If the temperature of the air where the swimmer rest is 23 degrees Celsius, what is the speed of sound?

Answers

(a) 0.67 Hz (b) 35.1 m/s (c) 1.5 s (d) 343 m/s at standard temperature and pressure (STP).



(a) The frequency of the wave can be calculated by dividing the number of wave crests that passed the swimmer by the time it took. In this case, frequency = 12/18 s = 0.67 Hz.

(b) The velocity of the waves can be found by multiplying the frequency by the wavelength.

The wavelength can be determined by the distance between one crest and the next crest, which is given as 2.6 m.

Therefore, velocity = frequency x wavelength = 0.67 Hz x 2.6 m = 35.1 m/s.

(c) The period of the wave is the time taken for one complete wave cycle to pass the swimmer.

It can be calculated by taking the reciprocal of the frequency.

Therefore, period = 1/frequency = 1/0.67 Hz = 1.5 s.

(d) The speed of sound depends on various factors such as temperature, humidity, and pressure.

At standard temperature and pressure (STP), which is 0 degrees Celsius and 1 atm, the speed of sound is approximately 343 m/s.

However, since the temperature given is 23 degrees Celsius, the speed of sound would be slightly higher than 343 m/s.

For more such questions on temperature, click on:

https://brainly.com/question/26866637

#SPJ11

(a) 0.67 Hz (b) 35.1 m/s (c) 1.5 s (d) 343 m/s at standard temperature and pressure (STP).

(a) The frequency of the wave can be calculated by dividing the number of wave crests that passed the swimmer by the time it took. In this case, frequency = 12/18 s = 0.67 Hz.

(b) The velocity of the waves can be found by multiplying the frequency by the wavelength.

The wavelength can be determined by the distance between one crest and the next crest, which is given as 2.6 m.

Therefore, velocity = frequency x wavelength = 0.67 Hz x 2.6 m = 35.1 m/s.

(c) The period of the wave is the time taken for one complete wave cycle to pass the swimmer.

It can be calculated by taking the reciprocal of the frequency.

Therefore, period = 1/frequency = 1/0.67 Hz = 1.5 s.

(d) The speed of sound depends on various factors such as temperature, humidity, and pressure.

At standard temperature and pressure (STP), which is 0 degrees Celsius and 1 atm, the speed of sound is approximately 343 m/s.

However, since the temperature given is 23 degrees Celsius, the speed of sound would be slightly higher than 343 m/s.

Visit to know more about Temperature:-
brainly.com/question/26866637

#SPJ11

A gas-cooled nuclear reactor operates between hot and cold reservoir temperatures of 700"C and 27.0°C. What is the maximum percent efficiency of a heat engine operating between these temperatures?

Answers

The Carnot cycle efficiency formula can be used to determine the maximum theoretical efficiency of a heat engine running between two temperatures:Therefore, a heat engine operating between these temperatures has a maximum theoretical efficiency of 69.1%.

Efficiency is equal to 1 - (T_cold/T_hot).

where T_cold and T_hot are the temperature of the cold and hot reservoirs, respectively.

In this instance, the hot reservoir has a temperature of 700 °C, or 973.15 K, and the cold reservoir has a temperature of 27.0 °C, or 300.15 K.

These values are entered into the equation to produce:

Efficiency is equal to one minus (300.15 K/973.15 K) = 0.691, or 69.1%.

This is a theoretical maximum, though, and a gas-cooled nuclear reactor's real efficiency would be lower because of things like friction, heat loss, and other system inefficiencies.

For more such questions on heat

https://brainly.com/question/29419715

#SPJ11

The maximum theoretical efficiency of a heat engine operating between two temperatures is given by the Carnot efficiency, which is:

η_carnot = 1 - T_cold / T_hot

where T_hot and T_cold are the absolute temperatures of the hot and cold reservoirs, respectively.

To calculate the absolute temperatures from the given temperatures, we need to add 273.15 K to each temperature to convert from Celsius to Kelvin:

T_hot = 700°C + 273.15 = 973.15 K

T_cold = 27.0°C + 273.15 = 300.15 K

Substituting these values into the Carnot efficiency equation gives:

η_carnot = 1 - 300.15 K / 973.15 K = 0.692 = 69.2%

Therefore, the maximum theoretical efficiency of a heat engine operating between a hot reservoir temperature of 700°C and a cold reservoir temperature of 27.0°C is 69.2%.

Learn more about Carnot efficiency, here:

brainly.com/question/14728751

#SPJ11

a battery with emf 9.00 v and internal resistance 1.10 ω is in a complete circuit with a resistor of resistance 15.3 ω . find the current in the circuit.

Answers

A battery with emf 9.00 v and internal resistance 1.10 ω is in a complete circuit with a resistor of resistance 15.3 ω the current in the circuit is 0.549 A.

To find the current in the circuit, we can use Ohm's Law, which states that the current through a conductor between two points is directly proportional to the voltage across the two points and inversely proportional to the resistance between them. In this case, the voltage is the EMF of the battery, which is 9.00 V, and the total resistance in the circuit is the sum of the internal resistance of the battery and the resistance of the external resistor, which is 1.10 Ω + 15.3 Ω = 16.4 Ω.
Using Ohm's Law, we can calculate the current as:
I = V/R
where I is the current, V is the voltage, and R is the resistance. Substituting the values we have, we get:
I = 9.00 V / 16.4 Ω = 0.549 A
Therefore, the current in the circuit is 0.549 A. It is important to note that the internal resistance of the battery causes some resistance in the circuit, which reduces the amount of current that can flow through it. This resistance is also known as the "internal impedance" of the battery.

To know more about resistance visit :

https://brainly.com/question/30669051

#SPJ11

Pls someone help with this!!!!!



Fill in the blanks:


1. ) So even though liquid and solid water at 0 degrees C both have the same _______, they may have different thermal energy levels because the temperature doesn’t account for the _________ _________ that thermal energy includes.


2. ) Liquid water has greater________ energy as the molecules can move more freely away from one another (increasing their _______________ potential energy)


3. ) When heat is added to an object, the particles of the object take in the energy as __________ energy until reaching a ___________ state.


4. ) While in the ___________ state, the particles will no longer gain kinetic energy and ___________ energy begins to increase, causing the particles to move away from one another

Answers

1. Temperature is the measure of the average kinetic energy of the molecules of a substance. So even though liquid and solid water at 0 degrees Celsius both have the same temperature, they may have different thermal energy levels because the temperature doesn’t account for the kinetic energy that thermal energy includes.

2. Liquid water has greater kinetic energy as the molecules can move more freely away from one another, increasing their potential energy.

3. When heat is added to an object, the particles of the object take in the energy as kinetic energy until reaching a thermal equilibrium state.

4. While in the gaseous state, the particles will no longer gain kinetic energy and potential energy begins to increase, causing the particles to move away from one another

learn more about kinetic energy Refer: https://brainly.com/question/999862

#SPJ11

A frictionless piston (diameter 12.5 cm) contains 1.12 kg of refrigerant (R134a) in a vertical piston-cylinder arrangement. The local atmospheric pressure is 95.9 kPa. The initial pressure of the R-134a is 140 kPa and its temperature is 0°C. The piston-cylinder is now put into a cold room where the temperature of the piston cylinder (and its contents) drops to (-22°C). In B, what is the mass of the piston (kg)? m =? kg In B, what is the final volume of the refrigerant (m3)? V=? m3 n B, what is the work (kJ)? Magnitude W=? kJ in or out? In B, what is the heat transfer (kJ)? Magnitude Q=? kJ in or out?

Answers

a) The mass of the piston is not given, so it cannot be determined.

b) The final volume of the refrigerant is 0.0194 m³.

c) The work done by the refrigerant during the expansion process is -28.5 kJ.

d) The heat transfer during the process is -5.35 kJ, which means heat is leaving the refrigerant.

a) The mass of the piston is not given in the problem statement, so it cannot be determined without additional information.

b) The final volume of the refrigerant can be determined using the ideal gas law. At the initial state, the pressure is 140 kPa and the temperature is 273 K. At the final state, the pressure is 95.9 kPa and the temperature is 251 K. Using the ideal gas law, the final volume is

Vf = (nRTf)/Pf = (1.12 kg)/(102.03 kg/kmol)×(251 K)×(95.9 kPa)/(1 atm)×(101.325 kPa)= 0.0194 m³.

c) The work done by the refrigerant during the expansion process can be determined using the formula W = -∫PdV, where P is the pressure and V is the volume. Since the process is reversible and adiabatic, we can use the ideal gas law to obtain the relationship [tex]PV^{y}[/tex] = constant, where γ is the ratio of the specific heats. Since the process is isentropic, the entropy change is zero and the polytropic exponent is the same as the ratio of specific heats. Thus, we have

[tex]P_{1} V_{1} ^{y}[/tex] = [tex]P_{2} V_{2} ^{y}[/tex], and W = -P₁V₁[tex]^{y(y-1)}[/tex] * (V₂[tex]^{(y-1)}[/tex] - V₁[tex]^{(y-1)}[/tex]) W = -28.5 kJ.

d) The heat transfer during the process can be determined using the first law of thermodynamics, which states that

Q = W + ΔU,

where ΔU is the change in internal energy of the refrigerant. Since the process is adiabatic,

Q = 0, and we have

ΔU = W. Thus, the heat transfer during the process is -5.35 kJ, which means heat is leaving the refrigerant.

To learn more about heat transfer, here

https://brainly.com/question/31065010

#SPJ4

1.find tα /2,n-1 (critical value) for the following levels of α (assume 2-tailed test) a.α = .05 and n = 15 b.α = .01 and n = 12 c.α = .10 and n = 21

Answers

The critical values are  2.145, 3.106 and 1.725.

To find tα/2,n-1 (critical value) for a given level of α and degrees of freedom (df), we can use a t-distribution table or a statistical software. Here are the answers for the given values of α and n:

a. For α = .05 and n = 15, the df = n-1 = 14. Using a t-distribution table with α/2 = .025 and df = 14, we find the critical value to be 2.145. This means that if the calculated t-value falls beyond ±2.145, we reject the null hypothesis at the 5% significance level.

b. For α = .01 and n = 12, the df = n-1 = 11. Using a t-distribution table with α/2 = .005 and df = 11, we find the critical value to be 3.106. This means that if the calculated t-value falls beyond ±3.106, we reject the null hypothesis at the 1% significance level.

c. For α = .10 and n = 21, the df = n-1 = 20. Using a t-distribution table with α/2 = .05 and df = 20, we find the critical value to be 1.725. This means that if the calculated t-value falls beyond ±1.725, we reject the null hypothesis at the 10% significance level.

The t-distribution is used when the sample size is small and/or the population standard deviation is unknown. The critical value tα/2,n-1 represents the t-score that separates the rejection region (the extreme values that lead to rejecting the null hypothesis) from the acceptance region (the values that do not lead to rejecting the null hypothesis).

For a two-tailed test, we divide the significance level α by 2 and find the critical value for the lower tail and the upper tail separately. The degrees of freedom (df) represent the number of independent observations in the sample and affect the shape and variability of the t-distribution. As the sample size increases, the t-distribution becomes closer to the normal distribution, which has a fixed critical value of 1.96 for α = .05 and a two-tailed test.

To learn more about critical value refer here:
https://brainly.com/question/30168469

#SPJ11

what is the power of the eye in d when viewing an object 35.3 cm away? (assume the lens-to-retina distance is 2.00 cm.)

Answers

The power of the eye when viewing an object 35.3 cm away is 50 diopters (D).

To determine the power of the eye when viewing an object, we can use the formula for calculating the power of a lens

P = 1/f

Where P is the power of the lens in diopters (D), and f is the focal length of the lens in meters.

In this case, we can consider the eye as a lens system, and the lens-to-retina distance as the focal length. The lens-to-retina distance is given as 2.00 cm, which is equivalent to 0.02 meters.

To calculate the power of the eye, we can use the formula

P = 1/f = 1/0.02 = 50 D

Therefore, the power of the eye when viewing an object 35.3 cm away is approximately 50 diopters (D).

To know more about power here

https://brainly.com/question/28326447

#SPJ4

albert einstein's ideas about the interrelationships between time and space and between energy and matter.

Answers

Albert Einstein's ideas about the interrelationships between time and space and between energy and matter are encapsulated in his theory of relativity, which revolutionized our understanding of the physical world.

1. Special Theory of Relativity: In 1905, Einstein proposed the special theory of relativity. It introduced two fundamental concepts: time dilation and length contraction. According to this theory, the laws of physics are the same for all observers moving at a constant velocity relative to each other. Key principles of the special theory of relativity include:

a. Time Dilation: Einstein showed that time is not absolute but is relative to the observer's motion. Moving clocks appear to run slower than stationary clocks. This effect becomes noticeable when objects approach the speed of light.

b. Length Contraction: Similarly, lengths also appear to contract in the direction of motion for objects traveling at high speeds relative to an observer. This contraction is only noticeable at relativistic velocities.

2. General Theory of Relativity: Building upon the special theory of relativity, Einstein developed the general theory of relativity in 1915. It describes the effects of gravity as a curvature of spacetime caused by the presence of mass and energy. Key principles of the general theory of relativity include:

a. Spacetime Curvature: According to Einstein's theory, the presence of mass and energy curves the fabric of spacetime, similar to how a heavy object placed on a stretched fabric causes it to deform. This curvature determines the path of objects moving within the gravitational field.

b. Gravitational Time Dilation: In a gravitational field, time runs slower in regions of stronger gravitational pull. This means that clocks closer to massive objects, such as Earth, tick slower than clocks further away.

c. Gravitational Waves: The general theory of relativity predicts the existence of gravitational waves, ripples in spacetime caused by the acceleration of massive objects. These waves were detected for the first time in 2015, confirming a key prediction of Einstein's theory.

3. Mass-Energy Equivalence: Einstein's famous equation, E = mc^2, expresses the equivalence of mass (m) and energy (E). It states that mass can be converted into energy and vice versa. This equation demonstrates that even a small amount of mass can release a tremendous amount of energy, as witnessed in nuclear reactions.

Overall, Einstein's ideas about the interrelationships between time and space and between energy and matter fundamentally reshaped our understanding of the physical universe. His theories of relativity have been extensively tested and confirmed through numerous experiments and observations and continue to serve as the foundation of modern physics.

To know more about theory of relativity, please click on:

https://brainly.com/question/364776

#SPJ11

you can chew through very tough objects with your incisors because they exert a large force on the small area of a pointed tooth. what pressure in pa can you create by exerting a force of 390 n with your tooth on an area of 1.14 mm2?

Answers

By exerting a force of 390 N with your tooth on an area of 1.14 mm^2, you can create a pressure of 3.42x10^8 Pa. This high pressure allows you to chew through very tough objects with your incisors.

To calculate the pressure exerted by your incisor on the tough object, we can use the formula: pressure = force/area.

Given that the force exerted by your tooth is 390 N, and the area of the pointed tooth is 1.14 mm^2, we can plug these values into the formula to get:

pressure = 390 N / 1.14 mm^2

However, we need to convert the area from mm^2 to m^2 to get the answer in Pascal (Pa), which is the SI unit of pressure.

1 mm^2 = 1x10^-6 m^2

So, the pressure exerted by your tooth on the tough object is:

pressure = 390 N / (1.14x10^-6 m^2)

pressure = 3.42x10^8 Pa

Learn more about pressure here:-

https://brainly.com/question/29341536

#SPJ11

What should one keep in mind while drawing maximum or minimum slope line? a. The line must pass through the last uncertainty bar b. The line must pass through the most if not all uncertainty bars c. The line must pass through the uncertainty bars on first and last data d. The line must pass through the first uncertainty bar

Answers

b. The line must pass through the most if not all uncertainty bars.

When drawing a line with maximum or minimum slope through a set of data points, it is important to consider the uncertainty or error bars associated with each data point. These uncertainty bars represent the range or magnitude of uncertainty in the measurement.

The line with maximum or minimum slope should take into account the overall trend or pattern of the data points, aiming to pass through the most if not all uncertainty bars. By doing so, it accounts for the range of possible values within the uncertainty and minimizes the deviation of the line from the data points.

Passing through the most if not all uncertainty bars helps to ensure that the line represents the best fit to the data, accounting for the potential variability or error in the measurements. This approach provides a more accurate representation of the relationship between the variables being studied.

To know more about magnitude refer here

https://brainly.com/question/31022175#

#SPJ11

the velocity in centimeters per second of blood molecules flowing through a capillary radius

Answers

The velocity of blood flow in capillaries can vary depending on various factors, including blood pressure, viscosity, and the specific characteristics of the capillary bed.

The velocity of blood molecules flowing through a capillary can be explained by the principles of fluid dynamics. In a capillary, blood flow is characterized by laminar flow, which means that the blood flows in smooth, parallel layers.

The velocity of blood molecules can be affected by various factors, including the radius of the capillary. According to the principle of continuity, which states that the volume flow rate of an incompressible fluid remains constant along a tube, the velocity of blood molecules is inversely proportional to the cross-sectional area of the capillary.

As the radius of the capillary decreases, the cross-sectional area decreases as well. This leads to an increase in the velocity of blood molecules. This relationship can be explained by the equation of continuity:

A1V1 = A2V2

Where A1 and A2 are the cross-sectional areas at two different points along the capillary, and V1 and V2 are the corresponding velocities at those points.

Since the radius is inversely proportional to the cross-sectional area (A), we can rewrite the equation as:

r1^2 * V1 = r2^2 * V2

Where r1 and r2 are the radii at two different points along the capillary.

From this equation, we can observe that as the radius (r) decreases, the velocity (V) increases to maintain the constant flow rate. This means that blood molecules flow faster through narrower capillaries compared to wider ones.

To express the velocity in centimeters per second, it is important to consider the units of the radius. If the radius is given in centimeters, then the velocity will also be in centimeters per second. However, if the radius is given in another unit such as millimeters, the velocity would need to be converted accordingly.

To know more about capillaries, please click on:

https://brainly.com/question/30870731

#SPJ11

. consider a sound wave modeled with the equations(x,t)=4.00nm cos(3.66m−1x−1256s−1t). what is the maximum displacement, the wavelength, the frequency, and the speed of the sound wave?

Answers

The maximum displacement of the sound wave is 4.00 nm, the wavelength is approximately 1.72 m, the frequency is approximately 200 Hz, and the speed of the sound wave is approximately 344 m/s.

In the given equation, x(t) = 4.00 nm cos(3.66 m^-1 x - 1256 s^-1 t), you can identify different parameters of the sound wave. The maximum displacement, also known as amplitude, can be determined directly from the equation as the coefficient of the cosine function, which is 4.00 nm in this case.

The wave number (k) is 3.66 m^-1. To find the wavelength (λ), you can use the formula λ = 2π/k, which gives λ ≈ 2π/3.66 ≈ 1.72 m. The angular frequency (ω) is 1256 s^-1. To find the frequency (f), you can use the formula f = ω/(2π), which gives f ≈ 1256/(2π) ≈ 200 Hz. Finally, to find the speed of the sound wave (v), you can use the formula v = ω/k, which gives v ≈ 1256/3.66 ≈ 344 m/s.

To know more about the displacement, click here;

https://brainly.com/question/30087445

#SPJ11

What becomes of a wave's energy when the wave is totally reflected at a boundary?

Answers

The wave's energy is not lost when it is reflected. Instead, it is conserved and transferred to the reflected wave.

When a wave strikes a boundary, it is reflected, and the wave's energy is transferred to the reflected wave. When a wave is reflected at a boundary, the wave's energy is conserved. This means that the wave's energy remains the same before and after the reflection.The reflected wave's direction of travel is opposite to that of the incident wave's direction of travel. The reflection coefficient of the wave is a measure of how much energy is reflected and how much is transmitted through the boundary.The reflection coefficient is the ratio of the reflected wave's amplitude to the incident wave's amplitude. If the reflection coefficient is equal to one, all of the wave's energy is reflected, and none of it is transmitted through the boundary. If the reflection coefficient is equal to zero, all of the wave's energy is transmitted through the boundary, and none of it is reflected.Therefore, the wave's energy is not lost when it is reflected. Instead, it is conserved and transferred to the reflected wave.

learn more about amplitude Refer: https://brainly.com/question/9525052

#SPJ11

Determine the stretch in each spring for equilibrium of the 5-kg block. The springs are shown in the equilibrium position.

Answers

The problem statement lacks a visual or diagram for us to fully understand the setup and arrangement of the springs and the 5-kg block. Without such information, it is not possible to provide a meaningful answer.

In general, to determine the stretch in each spring for equilibrium of a system, we need to apply the principle of conservation of energy or the principle of virtual work. These principles involve setting up equations that balance the external forces acting on the system with the internal forces due to the springs. By solving these equations, we can find the stretch or displacement of each spring.

Without further details, I am unable to provide a specific solution to this problem. However, I can suggest seeking help from a physics tutor or providing more information for a more accurate answer.

Learn more about forces here:

https://brainly.com/question/13191643

#SPJ11

Determine an object's kinetic energy.


Potential energy is the energy of i


1


1-


Please help!!!! The more


i an object has, the more potential energy it has.


: mass


:: speed


:: position


" height


#m

Answers

To determine an object's kinetic energy, use the formula: Kinetic Energy = 1/2 * mass * speed^2. The object's mass and speed are the key factors in calculating its kinetic energy. The greater the mass and speed, the higher the kinetic energy of the object.

Kinetic energy is the energy possessed by an object due to its motion. It is directly proportional to the object's mass and the square of its speed. The formula, Kinetic Energy = 1/2 * mass * speed^2, quantifies this relationship. Mass represents the amount of matter in the object, while speed indicates how fast it is moving. When these values are plugged into the formula, the resulting value represents the object's kinetic energy. It is important to note that the kinetic energy of an object depends solely on its mass and speed, while potential energy relies on other factors such as position or height.

learn more about  kinetic energy here:

https://brainly.com/question/30361988

#SPJ11

For the following sequential circuit: Assume that new values of the inputs X and Y become available on the trailing edge of the clock. Assume the D Flip-Flops are trailing edge triggered. Assume all D Flip-Flops are initialized to 0. Assume the OR gate has a propagation delay of 1.5ns, the AND gates a delay of 2.0ns, and the inverters have a delay of 1.0ns. Assume the set-up time for each of the D Flip-Flops (Tsetup) is 1.0 ns Assume the propagation delay for the D Flip-Flops (Clk Q ) is 0.75 ns Assume that OUT2 needs to be in a stable state before the trailing edge of a clock cycle Find an expression for the next state of the output OUT1* in terms the inputs A and B and the present states of the outputs OUT1 and OUT2 Find an expression for the next state of the output OUT2* in terms the inputs A and B and the present states of the outputs OUT1 and OUT2 Complete the state table for this circuit. What is the maximum logic delay (Tlogic) in this circuit? Under what conditions does this maximum logic delay occur? What is the minimum clock period that this circuit can tolerate without risking an incorrect or metastable state? What is the maximum clock frequency that this circuit can tolerate without risking an incorrect or metastable state? What is the maximum hold time associated with D Flip-Flop to guarantee that the circuit does not enter into an incorrect or metastable state?

Answers

1. The expression for the next state of the output OUT1* is: OUT1* = A' ⨁ OUT1 ⨁ (B' ⨁ OUT2)

2. The expression for the next state of the output OUT2* is: OUT2* = (A ⨁ B') ⨁ OUT2

Find state of the output?

1. To determine the next state of the output OUT1*, we use the XOR (⨁) operation. The expression combines the complement of input A (A'), the current state of OUT1, and the XOR of the complement of input B (B') and the current state of OUT2.

2. To calculate the next state of the output OUT2*, we again use the XOR (⨁) operation. The expression combines the XOR of input A and the complement of input B (A ⨁ B'), with the current state of OUT2.

The state table, which provides the complete mapping of inputs and present states to the next states of OUT1 and OUT2, is not provided in the question and would need to be completed separately based on the given circuit configuration.

To determine the maximum logic delay (Tlogic) in the circuit, we need the details of the combinational logic used in the circuit, including the number and types of gates and their corresponding propagation delays. The maximum logic delay would occur when the signal takes the longest path through the combinational logic.

The minimum clock period that the circuit can tolerate without risking an incorrect or metastable state is determined by the maximum propagation delay in the circuit. The clock period should be longer than the sum of the maximum propagation delays of the components in the critical path.

The maximum clock frequency that the circuit can tolerate without risking an incorrect or metastable state is the reciprocal of the minimum clock period.

The maximum hold time associated with the D Flip-Flop is not provided in the question and would require additional information about the specific D Flip-Flop being used to ensure the circuit does not enter an incorrect or metastable state.

To know more about output, refer here:

https://brainly.com/question/14227929#

#SPJ11

Other Questions
Two identical positively charged particles are located on the x-axis. The first particle is located at z--65.5 cm and has a net charge of q!--28.9 nC. The second particle is loc and also has a net charge of q2 +289 nC. Calculate the electric potential at the origin (x-0) due to these two charged particles. 9 nC. The second particle is located at + x=0 N-m Enter answer here Conditions for mass wasting vary from place to place. Match the following conditions in terms of likelyhood of mass wasting as other high or low. Assume that the slope angle is the same in all these cases and it is not fat. Rock layers are paralel to the slope A low Earthquakes are common B. high D Rocks are untractured and said Clow Annu temperatures we goveraly above treating D high Things to do 1. Find the words from the story for the following meanings. Their initial spellings are given. a) a group of things of the same type appearing close together (c............ ..........) b) looking steadily for a long time, staring (g..... c) shining with a soft light that seems to move slightly (s.......... ..) Question 18 of 25Which expression gives the volume of a sphere with radius 15A 4r(15)B. 4r(15)C. (15)D (15) the nurse is teaching a client about metformin sa. when the client asks, "what does the sa mean?" what is the appropriate nursing response? Write an acrostic poem based on Capricorn from Schooled. Each line mustbegin with the letters of his name, as provided. Each detail must demonstrate apersonality trait of his or event he was involved in. As organizations become more complex, it becomes increasingly important for managers to do what? a) Make each part of the organization less specialized. b) Lessen the complexity of the organization's environment c) Create mechanisms to coordinate different parts of the organization. d) Identify leaders for each part of the organization. a two-way between-subjects anova is appropriate for analyzing differences in the combination of levels for two or more factors. (True or False) an outcome that can result from either a price ceiling or a price floor is an enhancement of efficiency. undesirable rationing mechanisms. a surplus. a shortage. which term applies to a doctor who has a contract with your health plan? What is the explicit formula for the sequence? an = 1-en-1 nten0, 1-e 1-e 1-e 1-e 2+e, 2+e, 2+e4,2+e5, *. an 1-en-1 n+en+1 an = 1-en-1 2+en an || 1-en 2+en According to Michael Sandel in his first video in the Harvard Justice course, philosophy does what? Makes the ordinary appear strange Shows different ways of seeing the same old things Should not conclude with skepticism O All of the above Historically, the default rate on a certain type of commercial loan is 20 percent. If a bank makes 100 of these loans, what is the approximate probability that at least 26 will result in default? .0668 .0336 .0846 .2000 Compute the curl of the vector field. F = (x2 y2)i+ 4xyjcurl F = 1. +2, -5, +3, -4, +12. -9, -2, +7, -6, +53. -5, -8, -3, +4, +34. +8, +5, +2, +7, -65. -4, +6, -6, +4, -76. +8, +5, +9, -6, -97. -7, -2, +4, -5, -18. +3, +5, -5, +6, +29. -6, +4, -8, +7, -210. -3, +8, -4, +1, -7 Gerry is registering for classes next semesters. He is deciding between two teachers, Dr Anderson and Dr. Bean. He speaks To 17 friends that previously took the course from Dr. Anderson and also speaks to 17 friends that took it from Dr. Bean. Eight of his friends said they highly recommend Dr. Anderson. 11 of his friends highly recommended Dr. Bean cost of goodsl sold was 5345 accoutns payable increased 11281 and inventroy increased by18838 what was cash paid to suppliers peopole high in __ tend to perform well at work and live longer Jake net pay is $160. 65 after deductions of $68. 85. He makes $8. 50 per hour how much hours did he work? Show working outs **Excerpt taken from The Historic Rise of Old Hickory by Suzanne B. Williams**Four major candidates ran in the 1824 election, all under the "Democratic-Republican" name. One of the candidates, Andrew Jackson, was already famous. In the 1780s, he earned the right to practice law and served in various offices of the state government, including senator. He earned the nickname "Old Hickory" for his toughness as a general during the War of 1812 and First Seminole War. Jackson supported slavery and "Indian removal." This earned him support from voters in southern and frontier states. The other three candidates were John Quincy Adams of Massachusetts, Henry Clay of Kentucky, and William Crawford of Georgia.U.S. presidents are elected through the Electoral College. The Founding Fathers worried that Americans were too spread out to learn enough about the candidates. Under the Electoral College, Americans cast their ballot for the popular vote, which chooses the electors for each state. The number of electoral votes each state equals the number of representatives and senators combined. The candidates must win an absolute majority of electoral votes to win the election.In 1824, Andrew Jackson won the popular vote, but he did not win it in each state. Jackson and Adams both won many electoral votes. Jackson won the most with 99. However, a candidate needs an absolute majority of electoral votes to win. In 1824, Jackson needed 131 to win. When there is not majority winner, the election goes to the House of Representatives. This has only happened twice in U.S. history.Even though he won the popular vote and many electoral votes, Andrew Jackson lost the presidency in 1824. John Quincy Adams was the Secretary of State at this time. Henry Clay was the Speaker of the House of Representatives. Henry Clay, receiving the least, was left out. However, as a leader in the House of Representatives, he had influence over the other members. Clay openly hated Jackson and there were rumors that Clay made a deal with Adams in exchange for his support. The House election declared John Quincy Adams president. Soon, he chose Henry Clay to fill the seat he left vacant, Secretary of State. Jackson was shocked and enraged. Although there was no inquiry of possible wrongdoing, Jackson accused Adams and Clay of making a "corrupt bargain."John Quincy Adams was a disappointment as president. Many of his goals created divisions like federal funds for internal improvement. Some states thought that taking federal funds would force them to follow certain rules. They felt this reduced their rights as independent states. Jackson took advantage of issues like this one to gather more support. More Jackson supporters found their way to seats in Congress. He was as a man of the people and said Adams could never understand the common mans concerns.John Quincy Adams ran against Andrew Jackson in the 1828 election. Personal attacks grew even more vicious, but Andrew Jackson appealed to many. He believed government was for the common man. He believed in strict reading of the law and limited internal improvements. He also believed in states rights.Andrew Jackson easily won the 1828 election, winning both the popular vote and a majority of electoral votes. Historians note the sectional nature of the voting. Support for Jackson was concentrated in South while Adams support was mostly in the North. Jackson was so popular because he brought changes to the government. He also wanted to make sure the government was responsible for its actions. Jackson pushed settlement into the frontier. He supported the Indian Removal act. He also defended the spread of slavery. Though his support was heavier in the South, he was determined to keep a unified nation. The rise and presidency of Old Hickory is memorable to Americans today.**Which of the following did Andrew Jackson not support?**A) A limited national governmentB) Spreading of slavery to the frontierC) Federal funds for internal improvementsD) A strict interpretation of the U.S. Constitution