According to records, the amount of precipitation in a certain city on a November day has a mean of inches, with a standard deviation of inches. What is the probability that the mean daily precipitation will be inches or less for a random sample of November days (taken over many years)

Answers

Answer 1

Answer:

The probability that the mean daily precipitation will be of X inches or less for a random sample of n November days is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is mean amount of inches of rain and [tex]\sigma[/tex] is the standard deviation.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution:

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question:

Mean [tex]\mu[/tex], standard deviation [tex]\sigma[/tex]

n days:

This means that [tex]s = \frac{\sigma}{\sqrt{n}}[/tex]

Applying the Central Limit Theorem to the z-score formula.

[tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

What is the probability that the mean daily precipitation will be of X inches or less for a random sample of November days?

The probability that the mean daily precipitation will be of X inches or less for a random sample of n November days is the p-value of [tex]Z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex], in which [tex]\mu[/tex] is mean amount of inches of rain and [tex]\sigma[/tex] is the standard deviation.


Related Questions

Quadrilateral
N
V
D
I
NVDI can be mapped onto Quadrilateral
F
L
S
W
FLSW by a reflection. If
m

V
=
2
3

m∠V=23

and
m

D
=
8
1

m∠D=81

, find
m

S
m∠S.

Answers

9514 1404 393

Answer:

  ∠S = 81°

Step-by-step explanation:

Reflection does not change the angle measures.

The quadrilateral names tell you angle D corresponds with angle S. So, angle S has the same measure.

  ∠S = ∠D = 81°

The mean height of women in a country (ages 20-29) is 64 4 inches A random sample of 50 women in this age group is selected What is the probability that the mean height for the sample is greater than 65 inches? Assume o = 2.91 The probability that the mean height for the sample is greater than 65 inches is​

Answers

Answer:

0.0721 = 7.21% probability that the mean height for the sample is greater than 65 inches.

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution:

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

Mean of 64.4 inches, standard deviation of 2.91

This means that [tex]\mu = 64.4, \sigma = 2.91[/tex]

Sample of 50 women

This means that [tex]n = 50, s = \frac{2.91}{\sqrt{50}}[/tex]

What is the probability that the mean height for the sample is greater than 65 inches?

This is 1 subtracted by the p-value of Z when X = 65. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{65 - 64.4}{\frac{2.91}{\sqrt{50}}}[/tex]

[tex]Z = 1.46[/tex]

[tex]Z = 1.46[/tex] has a p-value of 0.9279

1 - 0.9279 = 0.0721

0.0721 = 7.21% probability that the mean height for the sample is greater than 65 inches.

You have savings of 30,000. You invest in a bond mutual fund that pays 3% simple interest. What are your total savings after 20 years?

Answers

Answer:

54,183.34

Step-by-step explanation:

a = 30,000(1.03)²⁰

a = 54,183.34

A and B are independent events. Use the following probabilities to answer the question. Round to 4 decimal places.

P(A) = 0.32, P(A and B) = 0.09, find P(B)

P(B) =

Answers

Answer:

.2813

Step-by-step explanation:

If two events are independent that means that

A*B= A and B

so

let p(b)= x

.09=.32*x

x= .28125

Round this to

.2813

Step-by-step explanation:

since p(a) and p(b) are independent events

p(a).p(b)= p(a and b)

0.32×p(b)=0.09

p(b)=0.09÷0.32

p(b)=0.28

two(2) color game dice were tossed together. make lists of possible outcomes, if each color game die has pink, red, orange, blue, green, and yellow side UseP for pink, R for red, O for orange, B for blue, G for green, and Y for yellow. write your answers in your notebook​

Answers

PP, PR, PO, PB, PG, PY,
RP, RR, RO, RB, RG, RY
OP, OR, OO, OB, OG, OY
BP, BR, BO, BB, BG, BY
GP, GR, GO, GB, GG, GY
YP, YR, YO, YB, YG, YY

There are 6 x 6 = 36 possible outcomes

How to solve and answer

Answers

Answer:

D.   (-2, 0) and (3, 0).

Step-by-step explanation:

At the x -intercepts the function = 0, so

(2x + 4)(x - 3) = 0

2x + 4 = 0 and x - 3 = 0

x = -4/2 = -2 and x = 3.

So they are (-2, 0) and (3, 0).

x = 3 or x = -2

Step-by-step explanation:

f(x) = (2x + 4)(x - 3)

y = (2x + 4)(x - 3)

x - intercept occurs when y = 0

0 = (2x + 4)(x - 3)

0 = 2x² - 6x + 4x - 12

2x² - 2x - 12 = 0

(2x² - 2x - 12)/2 = 0/2

x² - x - 6 = 0

From the quadratic formula,

x = (-b +- √(b² - 4ac))/2a

x = (- ( -1 ) +- √(( -1)² - 4( 1 )( -6 )))/2( -1 )

x = (1 +- √(1 - ( -24)))/-2

x = (1 +- √25)/-2

x = (1 +- 5)/-2

x = 3 or x = -2

If this the graph of f(x), then which of the following could be the graph of f-1(x)

Answers

The graph (C) represents the inverse function of f(x) if the graph of a function f(x) is given option (C) is correct.

What is a function?

It is defined as a special type of relationship, and they have a predefined domain and range according to the function every value in the domain is related to exactly one value in the range.

The question is incomplete.

The complete question is in the picture, please refer to the attached picture.

We have a graph of f(x) is shown in the picture.

As we know, if f(x) has ordered double (x, y)

Then inverse of function g(x) must have ordered double (y, x)

From the given options graph (C) satisfy the condition.

Thus, the graph (C) represents the inverse function of f(x) if the graph of a function f(x) is given option (C) is correct.

Learn more about the function here:

brainly.com/question/5245372

#SPJ1

Answer:

the answer would be option C

At a real estate​ agency, an agent sold a house for ​$367,000 The commission rate is
6.5% for the real estate agency and the commission rate for the agent is ​25 % of the amount the real estate agency gets. How much did the agency make on the​ house? How much did the agent earn in​ commission?
The agency made ​$___ on the house.

Answers

Answer:

The agency makes 23855

The agent makes 5963.75

Step-by-step explanation:

First find the commission for the agency

367000 * 6.5%

367000*.065

23855

Now the agent gets 25% of this amount

23855 *25%

23855 *.25

5963.75

Answer:

Step-by-step explanation:

The agency made $24,440.00

The Agent made $6,110.00

what is a case control study

Answers

Answer:

A study that compares two groups of people: those with the disease or condition under study (cases) and a very similar group of people who do not have the disease or condition (controls). Researchers study the medical and lifestyle histories of the people in each group to learn what factors may be associated with the disease or condition. For example, one group may have been exposed to a particular substance that the other was not. Also called retrospective study.

Step-by-step explanation:

Answer:

A case-control study is designed to help determine if an exposure is associated with an outcome (i.e., disease or condition of interest).

Step-by-step explanation:

Use the following formula for compound interest. If P dollars is invested at an annual interest rate r (expressed as a decimal) compounded n times yearly, the amount A after t years is given by

A= P(1+ r/n)^nt

Required:
What rate of interest is required so that $1000 will yield $1900 after 5 years if the interest rate is compounded monthly?

Answers

Answer:

12.906%/year

Step-by-step explanation:

Given data

Principal= $1000

Final Amount= $1900

Time= 5 years

The compound interest formula is given as

A= P(1+ r/n)^nt

Solving for rate r as a decimal

r = n[(A/P)1/nt - 1]

r = 12 × [(1,900.00/1,000.00)1/(12)(5) - 1]

r = 0.12906

Then convert r to R as a percentage

R = r * 100

R = 0.12906 * 100

R = 12.906%/year

Savannah needs to buy a bag of dog food that will last for 2 weeks (14 days). She
estimates that a 20 lb bag will be enough. Is she correct?

Answers

Answer:

if it is a chihuahua, then it will be just fine with 20lb

Which of the following sets of data does not contain an outlier?
A.16, 17, 20, 19.48
B.59. 60. 61, 67.65
C.95.99.97.94.60
D.-1.2.1.0.5.16

Answers

Answer:

it is a letter b

Step-by-step explanation:

that does not contain an outlet

What are the zeros of the function y = 2x2 + 5x + 2?
A. x =
- 3x =
x = -2
B. X =
1
2
.X = 2
C. X =
3.x=-2
O D. x=-1.x = 2

Answers

Answer: not sure

but I need points

Step-by-step explanation:

JUST KIDDING It’s A I did this in school before and got it correct :)


Which choice describes symmetry?
A. When something is exactly the same on one side as it is on the
other side.
B. When something looks completely different on one side than
the other side.
C. When something has a spherical shape.

Answers

Answer: A. When something is exactly the same on one side as it is on the

other side

Step-by-step explanation: symmetry mean symmetrical: aka they look the same :) hope this helped!

anyone help me, let's prove

Answers

Answer:

In my opinion the limit is equal to 1 not 0, sorry.

Step-by-step explanation:     6  25  13  43

lim n ⇒∞ ((2n - 1)/2n)

lim n ⇒∞ (2n/2n) - 1)/2n)        2n/2n = 1    1/∞  = 0

              =   1  - 0

              =    1

   

when I graphed the function I also got 1

A filling machine fills bottles of nail polish with amounts that are normallydistributed with mean 18 mL and standard deviation 0.6 mL. A random sample of 12 bottles of this nail polish is selected for inspection.

Required:
a. What is the probability that one of the randomly selected bottles is filled with less than 17.5mL of nail polish?
b. What is the probability that the average fill of the twelve bottles is more than 17.5mL?

Answers

Answer:

a. 0.2033 = 20.33% probability that one of the randomly selected bottles is filled with less than 17.5mL of nail polish

b. 0.0019 = 0.19% probability that the average fill of the twelve bottles is more than 17.5mL

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution:

Problems of normal distributions can be solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

Mean 18 mL and standard deviation 0.6 mL.

This means that [tex]\mu = 18, \sigma = 0.6[/tex]

a. What is the probability that one of the randomly selected bottles is filled with less than 17.5mL of nail polish?

This is the p-value of Z when X = 17.5. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{17.5 - 18}{0.6}[/tex]

[tex]Z = -0.83[/tex]

[tex]Z = -0.83[/tex] has a p-value of 0.2033

0.2033 = 20.33% probability that one of the randomly selected bottles is filled with less than 17.5mL of nail polish.

b. What is the probability that the average fill of the twelve bottles is more than 17.5mL?

Twelve bottles, so now [tex]n = 12, s = \frac{0.6}{\sqrt{12}}[/tex]

The probability is:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{17.5 - 18}{\frac{0.6}{\sqrt{12}}}[/tex]

[tex]Z = -2.89[/tex]

[tex]Z = -2.89[/tex] has a p-value of 0.0019

0.0019 = 0.19% probability that the average fill of the twelve bottles is more than 17.5mL

PLEASE IM BEGGING ILL GIVE YOU BRAINIEST:
100 students are interviewed to see which of biology, chemistry or physics they prefer.
17 of the students are girls. 3 of the girls like biology best.
24 of the boys prefer physics.
8 out of the 28 who prefer chemistry are girls.
What percentage of the students prefer biology?

Answers

Answer:

32%

Step-by-step explanation:

3 girls like biology, 8 like chem and the rest prefer physics. 28 people like chemistry, and 24 boys like physics. This leaves 29 boys and 3 girls liking bio.

Answer: 32%

Step by step explanation:

What type of number is 12/3
Choose all that apply.
Whole number
Integer
Rational
Irrational

Answers

Answer: Rational

Step-by-step explanation: bc

What are the solutions of the equation 3x2+6x−24=0

Answers

Answer:

x = -4, x = 2

Step-by-step explanation:

We can start by dividing both sides by 3, the GCF of the right side, in order to make the problem easier to solve:

3x^2 + 6x - 24 = 0

x^2 + 2x - 8 = 0

Now, we can factor this equation. We need to find two numbers that add to 2 and multiply to -8. These numbers are 4 and -2. Therefore, we can factor the equation as follows:

(x + 4)(x - 2) = 0

Using the zero product property we get two equations which we can solve:

x + 4 = 0

x = -4

x - 2 = 0

x = 2

Answer: X=-4,x=2

Step by step explanation

Which polygon has
an interior angle sum of
1080°?

Answers

Answer:

Octagon

Step-by-step explanation:

An octagon has eight sides, so the sum of the angles of the octagon is 180(8 – 2) = 180(6) = 1080 degrees.

Because the octagon is regular, all of its sides and angles are congruent

Answer:

It's an octagon.  So should be the first one with 8 points.

Step-by-step explanation:

Suppose that from a group of 9 men, 1 will be randomly chosen for a dangerous assignment, and suppose that the chosen man will be killed during the assignment with a probability of 1/6. If Mark is one of the 9 men, what is the probability that he will be chosen for the assignment and killed during the assignment

Answers

Answer:

1/54

Step-by-step explanation:

1/9 x 1/6

(3√5 + 4√2)(√5 + √2)

Answers

Answer:

Step-by-step explanation:

3√5*√5+3√5*√2+ 4√2*√5+ 4√2*√2

15          +3√10     +  4√10    +  8

23+7√10

the fraction 6/10 is equivalent to which of the following? 12/24 or 24/40 or 3/6 or 16/20

Answers

Answer:

24/40

Step-by-step explanation:

You can multiply both the numerator and denominator by any number

Option #3: Lets multiply by 1/2 since when you multiply 6*1/2 it equals 3 and that is the same numerator as option #3 and so now let's do the same again to the denominator 10*1/2 equals 5 and that is NOT equal to 6 in the denominator for option #3 and you can't get 3 any other way than multiplying by 1/2 (same as *.5) and so it is wrong.

Now since we know how to do it I'll just do the math for the rest.

Option 1:

6/10

6*2/10*2

12/20 and that doesn't match so it's wrong.

Option 2:

6/10

6*4/10*4

=

24/40

It matches so it's correct let's try option 4 just to check.

Option 4:

6/10

6*2/10*2

12/20

that doesn't match so it's wrong (you could have tried multiplying by decimals by I doubt you are there to that kind of math yet.)

Answer: 24/40

The time to complete an exam is approximately Normal with a mean of 48 minutes and a standard deviation of 3 minutes. The bell curve below represents the distribution for testing times. The scale on the horizontal axis is equal to the standard deviation. Fill in the indicated boxes.

Answers

Answer:

This means the average amount of time is 48 minutes but many people will do it in 45 to 51

Hope This Helps!!!

Do the following lengths form a right triangle?​

Answers

Answer:

Yes

Step-by-step explanation:

The lengths of this right angle triangle (6, 8, 10) proves that the polygon is indeed a right angle triangle. This is because there are certain ratios to prove that a right angle triangle is indeed a right angle triangle. These are called the Pythagorean Triples . Some examples include; (3, 4, 5), (7, 24, 25) and (28, 45, 53). The Pythagorean Triple 3, 4, 5 can be scaled up to provide the triple 6, 8, 10, where the scale factor is 2.

what is the midpoint with the line segments with end points (-4, 6) (2,-1)

Answers

Answer:

(-1, 5/2)

Step-by-step explanation:

Midpoint = (-4 + 2)/ 2 ,  (6 - 1)/2

= (-2/2), (5/2)

= (-1, 5/2)

Answer:

Step-by-step explanation:

The midpoints of two coordinate is = [tex]\frac{x2 + x1}{2}[/tex] , [tex]\frac{y2 +y1}{2}[/tex].

Let x2 = 2

x1 = -4

y2 = -1

y1 = 6

Solution:

[tex]\frac{2+-4}{2} , \frac{-1+6}{2} \\\\\\= (-1,\frac{5}{2})[/tex]

Differentiate the function, y = (2x - 5)^2 (5-x^5)^2?​

Answers

Answer:

[tex]\displaystyle y' = 2(2x - 5)(x^5 - 5)(12x^5 - 25x^4 - 10)[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to Right

Distributive Property

Algebra I

Terms/CoefficientsFactoring

Calculus

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

f(x) = cxⁿ f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                                [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Derivative Rule [Chain Rule]:                                                                                    [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

y = (2x - 5)²(5 - x⁵)²

Step 2: Differentiate

Derivative Rule [Product Rule]:                                                                        [tex]\displaystyle y' = \frac{d}{dx}[(2x - 5)^2](5 - x^5)^2 + (2x - 5)^2\frac{d}{dx}[(5 - x^5)^2][/tex]Chain Rule [Basic Power Rule]:                                                                       [tex]\displaystyle y' = [2(2x - 5)^{2-1} \cdot \frac{d}{dx}[2x]](5 - x^5)^2 + (2x - 5)^2[2(5 - x^5)^{2-1} \cdot \frac{d}{dx}[-x^5]][/tex]Simplify:                                                                                                             [tex]\displaystyle y' = [2(2x - 5) \cdot \frac{d}{dx}[2x]](5 - x^5)^2 + (2x - 5)^2[2(5 - x^5) \cdot \frac{d}{dx}[-x^5]][/tex]Basic Power Rule:                                                                                             [tex]\displaystyle y' = [2(2x - 5) \cdot 1(2x^{1 - 1})](5 - x^5)^2 + (2x - 5)^2[2(5 - x^5) \cdot -5x^{5 - 1}][/tex]Simplify:                                                                                                              [tex]\displaystyle y' = [2(2x - 5) \cdot 2](5 - x^5)^2 + (2x - 5)^2[2(5 - x^5) \cdot -5x^4][/tex]Multiply:                                                                                                             [tex]\displaystyle y' = 4(2x - 5)(5 - x^5)^2 - 10x^4(2x - 5)^2(5 - x^5)[/tex]Factor:                                                                                                               [tex]\displaystyle y' = 2(2x - 5)(5 - x^5)[2(5 - x^5) - 5x^4(2x - 5)][/tex][Distributive Property] Distribute 2:                                                                 [tex]\displaystyle y' = 2(2x - 5)(5 - x^5)[10 - 2x^5 - 5x^4(2x - 5)][/tex][Distributive Property] Distribute 5x⁴:                                                             [tex]\displaystyle y' = 2(2x - 5)(5 - x^5)[10 - 2x^5 - 10x^5 + 25x^4][/tex][Addition] Combine like terms (x⁵):                                                                  [tex]\displaystyle y' = 2(2x - 5)(5 - x^5)(10 - 12x^5 + 25x^4)[/tex]Rewrite:                                                                                                             [tex]\displaystyle y' = 2(2x - 5)(x^5 - 5)(12x^5 - 25x^4 - 10)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

solve the following
2(x-2)=8

Answers

Answer:

2

Step-by-step explanation:

2 (x-2)=8 equal to 2x-4=8, put -4 to the other side by subtracting 4 on both sides once you do you get 2x=4 so 4 divided by 2 equals 2.

Answer:

x = 6

Step-by-step explanation:

2(x - 2) = 8

2x - 4 = 8

2x = 12

x = 6

The line on the graph passes through the points A (1, 3) and B (7, 1).
YA
a) Calculate the gradient of line AB.
b) Find the gradient of a line perpendicular
to AB.
+
A
D
c) Find the equation of the line passing
through point (4, 2) and perpendicular
to AB.

Answers

Answer:

Step-by-step explanation:

a) gradient of AB

  or

  Slope of AB

  [tex]Slope , m = \frac{y_B - y_A}{x_B - x_A}[/tex]

               [tex]=\frac{1 - 3 }{7 - 1 } \\\\=\frac{-2}{6}\\\\=-\frac{1}{3}[/tex]

b)

when lines are perpendicular to each other, the product of their slope = - 1

That is ,

           [tex]m_{AB} \times m_{perpendicular} = - 1 \\\\- \frac{1}{3} \times m_{perpendicular} = - 1\\\\m_{perpendicular} = - 1 \times \frac{-3}{1} = 3[/tex]

c) Equation of the line perpendicular to line AB and passing through ( 4 , 2 )

  [tex]( y - y_1) = m_{perpendicular} ( x - x_1) \ where \ (x_1 , y_ 1 ) = ( 4 , 2 ) \\\\( y - 2 ) = 3(x - 4 ) \\\\y = 3x - 12 + 2\\\\y = 3x - 10[/tex]

       

There are currently 441 dairy cows at Dancing Dairy Farm. Due to some considerations, the number of dairy cows is decreasing at the rate of 13 cows per year. Currently, each cow produces an average of 1157 gallons of milk per year, and production of milk is increasing at the rate of 39 gallons per cow per year. Use the product rule to determine the rate at which milk production at Dancing Dairy Farm is currently changing.

Answers

Answer:

the production of milk at the Dancing Dairy Farm is increasing by 2158 gallons/year

Step-by-step explanation:

Given the data in the question;

Let us represent the number of cows at the farm with x and

each cow produces y gallons of milk

Total mil production will be T.

so

T = x × y

now, differentiating with respect to t

dT/dt = d( xy )/dt

dT/dt = xdy/dt + ydx/dt

given that;

x = 441

y = 1157

dx/dt = -13

dy/dt = 39

so we substitute

dT/dt = ( 441 )( 39 ) + ( 1157 )( -13 )

dT/dt = 17199 - 15041

dt/dT = 2158

Therefore, the production of milk at the Dancing Dairy Farm is increasing by 2158 gallons/year

Other Questions
4. How much heat required to convert (heat up) 16 gm of ice to 125C of steam Cice = 2.03 J/gm.C, L = 2.264 J/gm Cwater = 4.184 J/gm.C 4 = 0.334 J/gm Csteam = 1.996 J/gm.C Graph the image of trapezoid PQRS after a translation 9 units right and 10 units up. ANSWER QUICK PLS Which sentence is punctuated and capitalized completely correctly?Jeffrey was born February 8, 1992.jeffrey was born February 8, 1992.Jeffrey was Born February 8, 1992.Jeffrey was born February 8,1992 The new office supply discounter, Paper Clips, Etc. (PCE), sells a certain type of ergonomically correct office chair. The annual holding cost per unit is $25, annual demand is 180,000 chairs, and the ordering cost is $150 per order. The lead time is 5 days. Because demand is variable (standard deviation of daily demand is 30 chairs), PCE has decided to establish a customer service level of 96%. The store is open 300 days per year.Required:a. What is the optimal order quantity? b. What is the safety stock? c. What is the reorder point? d. What is the optimal annual total inventory cost? a.)Would the equation be sine or cosine if the situation was someone being on a roller coaster that starts 15 ft above ground level, goes up to 45 feet above ground level, and goes down 20 feet under ground level? b.) What would the equation be? ford monition and the terminal is in the third quadrant 3characteristics of good respiratory surface By what percent is 4.5 10^5 greater than 9 10^4a) 200%b) 400%c) 500%d) 600% answer pls best gets brainiest what are plastids?name their types. which linear inequality is represented by the graph Help me out plz help me A sample of students at a university took a test that diagnosed their learning styles as active or reflective and also as visual or verbal. Each student received a numerical score on the active/reflective style and also a numerical score on the visual/verbal style. The sample size was 39, and the sample correlation coefficient turned out to equal .273.a. State the hypotheses for testing whether there is a positive correlation between these variables in the population of all students at this university.b. Calculate the value of the test statistic.c. Determine the p-value as accurately as possible.d. State the test decision for the = .10 and = .05 significance levels, and summarize your conclusion in context.e. If the sample size was much larger, and the value of the sample correlation coefficient stayed the same, describe the impact on your test statistic, p-value, and conclusion. 14Drag each tile to the correct box.Identify each cause of the French revolution as economic, political, or intellectuallack of representation of the third estate inthe Estates Generalthe success of the American Revolutionthe French government's aid to the Americansduring the American RevolutioneconomicpoliticalintellectualResetNet Pls help me. No links or fake answers pls.A verb that does not transfer its action to an object is called __________ .A) a transitive verbB) an intransitive verbC) either one, depending on the sentenceD) none of the above If energy is transferred spontaneously as heat from a substance with a temperature of T1 to a substance with a temperature of T2, which of the following statements must be true?1-T1 < T22-T1 = T23-T1 > T24-more information is needed The Punjab Highway department is studying traffic pattern on G.T. Road near Lahore. As part of previous study, population standard deviation is 680 number of vehicles per day. A random sample of 64 days gives mean of 5410 cars. Find a 90 percent confidence interval for population Mean (the average number of vehicles per day). Find an equation of the line passing through thepoint (6,5) and perpendicular to the line whoseequation is 2y + 3x = 6. Convert 14 into base 2 the movement of liquid particles through a circular motion What is the product of (a+b) (a-b)