The mean number of burps after drinking root beer is between 0.66 and 4.24 burps fewer than after drinking cola.
What is the definition of a mean number?Mean: The "average" number obtained by adding all data points and dividing the total number of data points by the total number of data points.
Part A: A paired t-test can be used to see if there is a significant difference in the number of burps after drinking root beer versus cola. The null hypothesis states that there is no difference in the mean number of burps between the two beverages, whereas the alternative hypothesis states that there is. Using a two-tailed test with a significance level of = 0.05, we find that the t-value is -3.365 and the p-value is 0.003. We reject the null hypothesis because the p-value is less than the significance level and conclude that there is a significant difference in the mean number of burps between root beer and cola.
Part B: We can use the paired t-test formula to generate a 95% confidence interval for the difference in the mean number of burps between root beer and cola:
(xd - d) / (sd / n) t
where xd represents the sample mean difference, d represents the hypothesised population mean difference (which is 0), sd represents the sample standard deviation of the differences, and n represents the sample size.
We calculate the sample mean difference to be -2.45 and the sample standard deviation of the differences to be 2.69 using the data in the table. We get a t-value of -3.365 with 19 degrees of freedom after plugging in these values. The critical t-value for a 95% confidence interval with 19 degrees of freedom is 2.093, according to a t-distribution table.
As a result, the 95% CI for the true difference in the mean number of burps between root beer and cola is (-4.24, -0.66). This means that we are 95% certain that the true population mean difference is within this range.
To know more about Mean Number Visit:
https://brainly.com/question/21800892
#SPJ1
Use Lagrange multipliers to find the points on the given cone that are closest to the following point.
z^2 = x^2 + y^2; (14, 8, 0)
x,y,z=(smaller z-value)
x,y,z=(larger z-value)
By using the Lagrange multipliers, the two points on the cone that is closest to (14, 8, 0) are:
(7, 4, √65) and (7, 4, -√65)
We want to minimize the distance between the point (14, 8, 0) and the points on the cone z^2 = x^2 + y^2. The distance squared between two points (x_1, y_1, z_1) and (x_2, y_2, z_2) is given by:
d^2 = (x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2
In our case, we want to minimize the distance squared between (14, 8, 0) and a point (x, y, z) on the cone z^2 = x^2 + y^2:
d^2 = (x - 14)^2 + (y - 8)^2 + z^2
Subject to the constraint z^2 = x^2 + y^2. We can use Lagrange multipliers to solve this constrained optimization problem. Let L be the Lagrangian:
L = (x - 14)^2 + (y - 8)^2 + z^2 - λ(z^2 - x^2 - y^2)
Taking the partial derivatives of L with respect to x, y, z, and λ, and setting them to zero, we get:
2(x - 14) - 2λx = 0.....(1)
2(y - 8) - 2λy = 0.....(2)
2z - 2λz = 0.....(3)
z^2 - x^2 - y^2 = 0.....(4)
Simplifying the third equation, we get z(1 - λ) = 0. Since we want to find points where z is not zero, we must have λ = 1. Then, from the first two equations, we get x = 7 and y = 4. Substituting these values into the fourth equation, we get:
z^2 = x^2 + y^2 = 65
So the two points on the cone that is closest to (14, 8, 0) by using Lagrange multipliers are:
(7, 4, √65) and (7, 4, -√65)
To know more about the "Lagrange multipliers": https://brainly.com/question/4609414
#SPJ11
there was a person trolling and didnt actually answer i need the answer to this
Answer:
Step-by-step explanation:
To write 0.246 as a fraction in simplest form, we need to remove the decimal and reduce the fraction to its lowest terms.
Step 1: Write 0.246 as the fraction 246/1000.
(Note: We get the denominator 1000 by counting the number of decimal places after the 6 in 0.246.)
Step 2: Simplify the fraction by dividing both the numerator and denominator by the greatest common factor.
The greatest common factor (GCF) of 246 and 1000 is 2.
246/2 = 123
1000/2 = 500
Therefore, 0.246 written as a fraction in simplest form is 123/500.
Answer:if I’m correct I think you would put it like this 123/500
It can’t be reduced because the denominator is at it’s simplest form
Step-by-step explanation:
A road running north to south crosses a road going east to west at the point P. car A is driving north along the first road, and an airplane is flying east above the second road. At a particular time the car is 15 kilometers to the north of P and traveling at 55 km/hr, while the airplane is flying at speed 185 km/hr 10 kilometers east of P at an altitude of 2 km. How fast is the distance between the car and the airplane changing? 148.38 km/hr Draw a sketch that shows the roads intersecting at point P, Car A, and the airplane. Label the horizontal distance from P to the airplane x and the vertical distance from P to Car A as y, and let z represent the altitude of the plane. What equation relates the distance from Car A to the plane with x, y and z? Using implicit differentiation, solve for the appropriate derivative that answers the "how fast" question.
The distance between car A and the airplane is changing at a rate of 148.38 km/hr.
To better understand this answer, we can draw a sketch of the scenario and label the variables accordingly.
Let x represent the horizontal distance from P to the airplane, y the vertical distance from P to car A, and z the altitude of the airplane. The equation that relates the distance from car A to the plane can be written as:
[tex]d^2 = (x^2 + y^2 + z^2)[/tex]
We can use implicit differentiation to solve for the derivative of this equation with respect to time, which answers the “how fast” question. The derivative of the equation is:
x = 185t (horizontal distance from P to airplane)
y = 15 - 55t (vertical distance from P to car)
z = 2 (altitude of airplane)
Now we can substitute these expressions into our equation for the distance between the car and the airplane, and take the derivative with respect to time:
distance between car and airplane = sqrt((185t)^2 + (15 - 55t)^2 + 2^2)
d/dt(distance between car and airplane) = d/dt(sqrt((185t)^2 + (15 - 55t)^2 + 2^2))
= 1/2 * (185^2 * 2t + (15 - 55t)(-55)) / sqrt((185t)^2 + (15 - 55t)^2 + 2^2)
Evaluating this expression at t = 0 (the time when the car is at its closest point to the airplane), we get:
d/dt(distance between car and airplane) = 1/2 * (185^2 * 2(0) + (15 - 55(0))(-55)) / sqrt((185(0))^2 + (15 - 55(0))^2 + 2^2)
= 1/2 * (-825) / sqrt(15^2 + 2^2)
= -412.5 / sqrt (229)
The negative sign indicates that the distance between the car and the airplane is decreasing, as expected. Finally, we can take the absolute value of this expression to get the speed at which the distance is changing:
d/dt (distance between car and airplane)| = 412.5 / sqrt (229) ≈ 148.38 km/hr.
For more similar questions on differentiation
https://brainly.com/question/30572604
#SPJ11
Write a equation for a parabola with a focus at (-2,5) and a directrix at x=3 format: x=
Answer:Write a equation for a parabola with a focus at (-2,5) and a directrix at x=3 format: x=
Step-by-step explanation:
the mean credit card debt for a u.s. household is $7,115 with o standard deviation of $2,160. this mean is such a large value because of a few deeply indebted households. if a random sample of 50 us households is selected, what is the approximate probability that the mean credit card debt for the sample exceeds $7,500?
The approximate probability that the mean credit card debt for a sample of 50 US households will exceed $7,500 is , based on a normal distribution with a mean of $7,115 and a standard deviation of $2,160.
What is the z-score formula?
The z-score formula is a statistical method used to calculate the standard deviation of a raw score or data point relative to the mean of the group of raw scores or data points. It is given as:
[tex]z = \frac{x - \mu}{\sigma}[/tex]
where z is the z-score, x is raw score, μ is the mean, and σ is the standard deviation.
The approximate probability can be calculated as follows:
First, find the standard error of the mean: [tex]SE = \frac{\sigma}{\sqrt{n}}[/tex]
[tex]SE = \frac{2,160}{\sqrt{50}}\\\\SE = 305.39[/tex]
Secondly, find the z-score: [tex]z = \frac{\overline{x} - \mu}{SE}[/tex]
[tex]z = \frac{7,500 - 7,115}{305.39}\\\\z = 1.263[/tex]
The probability that a z-score will be greater than 1.263 is 0.1038 from the standard normal table or calculator.
Therefore, the approximate probability is 0.1038 or 10.38%.
Learn more about Z-score formula here:
https://brainly.com/question/25638875
#SPJ11
use the newton-raphson method to find an approximate value of 3√7 . use the method until successive approximations obtained by calculator are identical. an appropriate function to use for the approximation would be f (x) = A x^2 + B x^3 + C x + D where A= B= C= D=
If c1 = 2, then c2 = ___
2√3= ____
evaluate the diagram below, and find the measures of the missing angles
Answer:
A=100
B= 80
C=80
D=100
E=80
F=80
G=100
Step-by-step explanation:
Transversals of Parallel lines:
corresponding angles
In solving the given question, we can say that ∠ZEFI and ∠ZJIK are equal parallel lines by co-exterior angles property.
what is parallel lines?Geometry parallel lines are coplanar infinite lines that do not intersect anywhere. In a given three-dimensional space, parallel faces are faces that never intersect. Curves with a constant minimum distance between them and no tangents or intersections are said to be parallel. Two lines that lie in the same plane, are equally spaced, and never intersect are called parallel lines in geometry. Can be applied horizontally or vertically. Parallel lines are found in everyday objects such as railroad tracks, rows of books, and crosswalks.
∠ZHIK and ∠ZEFI are equal by alternative angles property.
∠ZGFD and ∠ZEFD are equal by co-interior angles property.
∠ZGFD and ∠ZEFI are equal by interior alt. angles property.
∠ZEFI and ∠ZJIK are equal by co-exterior angles property.
To know more about parallel lines visit:
https://brainly.com/question/16701300
#SPJ1
Alfonso wants to purchase a pool membership
for the summer. He has no more than y dollars to
spend. The Aquatics Club charges an initial fee
of $75 plus $20 per month. The Swimming Hole
charges an initial fee of $15 plus $65 per month.
Write a system of inequalities that you can use to
determine which company offers the better deal.
Let x represent the number of months.
The system of inequalities of the company with the better offer is 75 + 20x ≤ y and 15 + 65x ≤ y
Identifying the system of inequalitiesLet's use A to represent the total cost (in dollars) of purchasing a pool membership from the Aquatics Club,
Let S represent the total cost of purchasing a pool membership from the Swimming Hole.
Then we can write the following system of inequalities:
A = 75 + 20x (total cost of Aquatics Club membership)
S = 15 + 65x (total cost of Swimming Hole membership)
Alfonso has no more than y dollars to spend
So, we have
75 + 20x ≤ y
15 + 65x ≤ y
Hence, the system is 75 + 20x ≤ y and 15 + 65x ≤ y
Read more about system of inequalities at
https://brainly.com/question/23093488
#SPJ1
what percentage of defective lots does the purchaser reject? find it for . given that a lot is rejected, what is the conditional probability that it contained 4 defective components
The purchaser rejects 26.01% of the lots that contain five or more defective components, and the conditional probability of having four defective components given that the lot was rejected is 0.1653.
How do we calculate the probability?The percentage of defective lots that the purchaser rejects can be found by using the given formula. We can also calculate the conditional probability of having four defective components, given that the lot was rejected. Here's how to do it.
Let p be the probability that any component is defective. Then the probability that any component is non-defective is 1-p.
According to the given data, a lot is rejected if and only if there are at least five defective components in it. Let q be the probability that a lot is defective, i.e. the probability that there are five or more defective components in a lot.
Then, q = P(X ≥ 5), where X is the number of defective components in the lot. We can find the probability of rejecting a lot by subtracting the probability of accepting the lot from 1. So, we have:
P(reject) = 1 - P(accept)
P(accept) = P(X ≤ 4)
Now, we need to find q. We can do this by using the binomial distribution:
[tex]P(X = k) = C(n, k) * pk * (1-p)n-k[/tex]
where C(n, k) is the number of ways to choose k items out of n items. Here, n = 20 (the number of components in a lot). So,
[tex]q = P(X \geq 5) = 1 - P(X\leq 4) = 1 - [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)][/tex]
[tex]q = 1 - [C(20, 0) * p0 * (1-p)20-0 + C(20, 1) * p1 * (1-p)20-1 + C(20, 2) * p2 * (1-p)20-2 + C(20, 3) * p3 * (1-p)20-3 + C(20, 4) * p4 * (1-p)20-4][/tex]
[tex]q = 1 - [1 * p0.2 * (1-0.2)20-0 + 20 * p0.2 * (1-0.2)20-1 + 190 * p0.2 * (1-0.2)20-2 + 1140 * p0.2 * (1-0.2)20-3 + 4845 * p0.2 * (1-0.2)20-4][/tex]
[tex]q = 0.2601[/tex] (rounded to four decimal places)
So, the purchaser rejects 26.01% of the lots that contain five or more defective components.
Now, we need to find the conditional probability that a lot contained four defective components given that it was rejected. Let R be the event that a lot is rejected, and let F be the event that a lot contains four defective components.
Then, we have to find P(F | R), the conditional probability of F given R. We can use Bayes' theorem to find this:
P(F | R) = P(R | F) * P(F) / P(R)
where P(R | F) is the probability of rejecting a lot given that it contained four defective components, P(F) is the prior probability of a lot containing four defective components, and P(R) is the overall probability of rejecting a lot.
[tex]P(F) = C(20, 4) * p4 * (1-p)20-4 = 0.186[/tex]
[tex][tex]P(R) = P(X \geq 5) = q = 0.2601[/tex][/tex]
[tex]P(R | F) = P(X \geq 5 | X = 4) = P(X = 5) / P(X = 4) = C(20, 5) * p5 * (1-p)20-5 / C(20, 4) * p4 * (1-p)20-4[/tex]
[tex]P(R | F) = 0.2308[/tex]
So, we have:
[tex]P(F | R) = P(R | F) * P(F) / P(R)[/tex]
[tex]P(F | R) = 0.2308 * 0.186 / 0.2601[/tex]
[tex]P(F | R) = 0.1653[/tex] (rounded to four decimal places)
Therefore, the conditional probability of having four defective components given that the lot was rejected is 0.1653.
See more about conditional probability at: https://brainly.com/question/10739997
#SPJ11
Transcranial magnetic stimulation (TMS) is a noninvasive method for studying brain function, and possibly for treatment as well. In this technique, a conducting loop is held near a person's head. When the current in the loop is changed rapidly, the magnetic field it creates can change at a rate of 3.00 104 T/s. This rapidly changing magnetic field induces an electric current in a restricted region of the brain that can cause a finger to twitch, a bright spot to appear in the visual field, or a feeling of complete happiness to overwhelm a person. If the magnetic field changes at the previously mentioned rate over an area of 1.75 10-2 m2, what is the induced emf?
The induced emf in a region of the brain when a conducting loop is held near a person's head and the current in the loop is changed rapidly, is equal to -525 V.
The induced emf can be calculated using Faraday's law of electromagnetic induction, which states that the emf induced in a loop of wire is equal to the rate of change of magnetic flux through the loop.
The magnetic flux (Φ) is equal to the product of the magnetic field (B) and the area (A) through which it passes. Therefore, the induced emf (ε) is given by:
ε = -dΦ/dt ⇒ -B dA/dt.
Where the negative sign indicates that the emf is induced in a direction that opposes the change in magnetic flux.
In this problem, the magnetic field changes at a rate of 3.00 × 10^4 T/s over an area of 1.75 × 10^-2 m^2. Therefore, the induced emf is:
Plugging in our values, we get:
E = (-3.00 10^4 T/s)(1.75 10^(-2) m^2)/(1 s)
E = -525 V
Therefore, the induced emf, in this case, is -525 V. Here, the negative sign shows that the emf is induced in a direction that opposes the change in magnetic flux
To know more about the "induced emf": https://brainly.com/question/13744192
#SPJ11
A series of locks manages the water height along a water source used to produce energy. As the locks are opened and closed, the water height between two consecutive locks fluctuates.
The height of the water at point B located between two locks is observed. Water height measurements are made every 10 minutes beginning at 8:00 a.m.
It is determined that the height of the water at B can be modeled by the function f(x)=−11cos(πx/48 − 5π/12)+28 , where the height of water is measured in feet and x is measured in minutes.
What is the maximum and minimum water height at B, and when do these heights first occur?
The given function f(x) = -11cos(πx/48 - 5π/12) + 28 models the height of water at point B between two locks, where x is the time in minutes beginning at 8:00 a.m.
The amplitude of the cosine function is 11, and the vertical shift is 28. The argument of the cosine function has a period of 96 minutes, which means that the function repeats itself every 96 minutes.
Therefore, the maximum water height at B is 39 feet and occurs at x = 120 minutes (10:00 a.m.), while the minimum water height at B is 17 feet and occurs at x = 0 minutes (8:00 a.m.). These heights occur because the cosine function attains its maximum value at x = 120 minutes and its minimum value at x = 0 minutes.
For more questions like Function click the link below:
https://brainly.com/question/12431044
#SPJ11
A plane flies between two cities 1836KM apart it travels at an average speed of 850 km/h calculate how long the flight takes give your answer in hours
Solve and then answer the question below.
*MUST SHOW WORK*
Half a number plus eight is fourteen minus a number. How many solutions does this equation have?
To answer the question, this equation has only one solution, which is x = 4.
What is equation?An equation is a mathematical statement that shows the equality between two expressions. It usually consists of two sides, the left-hand side (LHS) and the right-hand side (RHS), separated by an equal sign (=).
The expressions on both sides can contain variables, constants, and mathematical operations such as addition (+), subtraction (-), multiplication (*), division (/), exponentiation (^), and others. The goal of an equation is to find the values of the variables that make both sides equal.
by the question.
Let's start by setting up the equation:
[tex]1/2x + 8 = 14 - x[/tex]
where x is the number, we're trying to find.
Now let's simplify the equation by combining like terms:
[tex]3/2x + 8 = 14[/tex]
Subtracting 8 from both sides:
[tex]3/2x = 6[/tex]
Multiplying both sides by 2/3:
[tex]x = 4[/tex]
So, the solution to the equation is x = 4.
To learn more about equation:
https://brainly.com/question/30695173
#SPJ1
The first term of a sequence along with a recursion formula for the remaining terms is given below. Write out the first ten terms of the sequence.a1=6,an+1=an+(1/3^n)
The first term of the given sequence is 6, and the recursion formula for the remaining terms is 6, 6.333, 6.444, 6.481, 6.4938, 6.4988, 6.5007, 6.5018, 6.5024, 6.5026.
We are given a recursive formula: [tex]a_{n+1} = an + (1/3^n)[/tex] with [tex]a_{1} = 6.[/tex]
Using this formula, we can calculate the first few terms of the sequence as follows:
[tex]a_{1}= 6[/tex]
[tex]a_{2} = a_{1} + (1/3^1) = 6 + 1/3 = 6.333[/tex]
[tex]a_{3} = a_{2} + (1/3^2) = 6.333 + 1/9 = 6.444[/tex]
[tex]a_{4} = a_{3} + (1/3^3) = 6.444 + 1/27 = 6.481[/tex]
[tex]a_{5} = a_{4} + (1/3^4) = 6.481 + 1/81 = 6.4938[/tex]
[tex]a_{6} = a_{5} + (1/3^5) = 6.4938 + 1/243 = 6.4988[/tex]
[tex]a_{7} = a_{6} + (1/3^6) = 6.4988 + 1/729 = 6.5007[/tex]
[tex]a_{8} = a_{7} + (1/3^7) = 6.5007 + 1/2187 = 6.5018[/tex]
[tex]a_{9} = a_{8} + (1/3^8) = 6.5018 + 1/6561 = 6.5024[/tex]
[tex]a_{10} = a_{9} + (1/3^9) = 6.5024 + 1/19683 = 6.5026[/tex]
Therefore, the first 10 terms of the sequence are: 6, 6.333, 6.444, 6.481, 6.4938, 6.4988, 6.5007, 6.5018, 6.5024, 6.5026.
To practice more questions about 'recursion formula':
https://brainly.com/question/1275192
#SPJ11
Mr. Ferrell has feet of a piece of 5/6 cardboard. He wants to cut pieces that are foot long. 1/8 How many pieces can he make?
Mr. Ferrell can cut 6 and 2/3 pieces that are one-eighth foot long from a 5/6 foot long piece of cardboard.
What is common factor?A number is said to be a common factor if it can divide two or more integers without producing a residue. Common factors are used in fraction operations to simplify fractions and carry out operations like addition, subtraction, multiplication, and division.
Finding a common denominator is necessary, for instance, when adding or subtracting fractions. A multiple of all the fractions' denominators is referred to as a common denominator. We can determine the shared characteristics of the denominators and utilise the lowest common multiple (LCM) as the common denominator to obtain a common denominator.
Given that, one-eighth foot long pieces can be cut from a 5/6 foot long piece of cardboard.
First, we need to convert 5/6 feet into eighths of a foot:
5/6 feet = (5/6) * 8 eighths = 40/48 eighths
Next, we need to divide 40/48 by 1/8 to find the number of one-eighth foot long pieces that can be cut:
(40/48) ÷ (1/8) = (40/48) * (8/1) = 320/48 = 6 2/3 pieces
Hence, Mr. Ferrell can cut 6 and 2/3 pieces that are one-eighth foot long from a 5/6 foot long piece of cardboard.
Learn more about LCM here:
https://brainly.com/question/20739723
#SPJ1
5 2 fiths minus 1 2 fiths
Answer:
Step-by-step explanation:
2/5-1 2/5
A 5x5x5 cube is formed by assembling 125 unit cubes. Nine unit squares are painted on each of the six faces of the cube according to the pattern shown. How many of the 125 unit cubes have no paint on them?
In a 5x5x5 cube, 125-unit cubes are formed by assembling. According to the pattern shown, nine-unit squares are painted on each of the six faces of the cube. So the number of unit cubes that have no paint on them is 71.
To calculate the total number of unit cubes, multiply the number of unit cubes in each dimension.
Thus, 5 × 5 × 5 = 125 cubic units.
Since there are 6 faces to be painted, and each face has nine painted unit cubes, the total number of painted cubes is
6 × 9 = 54.
Each painted cube has three faces painted since the cube has three faces of the same size.
There are eight cubes on each of the edges that have three faces painted, so there are
8 × 12 = 96 of them that have three faces painted.
There are 12 edge cubes in total, all of which have two painted faces, for a total of
12 × 2 = 24 cubes that have two painted faces.
There are 6 center cubes in the cube, all of which have one painted face, for a total of 6 cubes with one painted face.
Each painted cube contributes one face to the total. As a result, the number of unpainted cubes is
125 - 54 = 71.
The number of unit cubes that have no paint on them is 71.
Learn more about cubes paint at: https://brainly.com/question/24898008
#SPJ11
Based on the following sorted 20 values for age, what are the possible split points?
{20, 22, 24, 26, 28, 31, 32, 33, 35, 40, 42, 43, 45, 47, 49, 50, 52, 53, 55, 57}
Multiple Choice
a {20, 21, 23, 25, 27, 29. 5, 31. 5, 32. 5, 34, 37. 5, 41, 42. 5, 44, 46, 48, 49. 5, 51, 52, 54, 56}
b {21, 23, 25, 27, 29. 5, 31. 5, 32. 5, 34, 37. 5, 41, 42. 5, 44, 46, 48, 49, 51, 52. 5, 54, 56, 57}
c {0, 21, 23, 25, 27, 29. 5, 31. 5, 32. 5, 34, 37. 5, 41, 42. 5, 44, 46, 48, 49, 51, 52. 5, 54, 56}
d {21, 23, 25, 27, 29. 5, 31. 5, 32. 5, 34, 37. 5, 41, 42. 5, 44, 46, 48, 49. 5, 51, 52. 5, 54, 56}
Based on the following sorted 20 values for age, the possible split points are {20, 21, 23, 25, 27, 29. 5, 31. 5, 32. 5, 34, 37. 5, 41, 42. 5, 44, 46, 48, 49. 5, 51, 52, 54, 56} (option a).
Option A suggests that the split points are {20, 21, 23, 25, 27, 29.5, 31.5, 32.5, 34, 37.5, 41, 42.5, 44, 46, 48, 49.5, 51, 52, 54, 56}. Notice that every split point falls between two consecutive ages in the original list. For example, the first split point is 20 because it is between 20 and 22. The second split point is 21 because it is between 20 and 22 as well.
Option B suggests that the split points are {21, 23, 25, 27, 29.5, 31.5, 32.5, 34, 37.5, 41, 42.5, 44, 46, 48, 49, 51, 52.5, 54, 56, 57}. Notice that the only difference between this option and Option A is that the last split point is 57 instead of 49.5.
Option C suggests that the split points are {0, 21, 23, 25, 27, 29.5, 31.5, 32.5, 34, 37.5, 41, 42.5, 44, 46, 48, 49, 51, 52.5, 54, 56}. Notice that the first split point is 0, which is not a possible age in the original list.
Option D suggests that the split points are {21, 23, 25, 27, 29.5, 31.5, 32.5, 34, 37.5, 41, 42.5, 44, 46, 48, 49.5, 51, 52.5, 54, 56}. Notice that the only difference between this option and Option A is that the split point after 49 is 49.5 instead of 49.5.
In summary, the correct answer is Option A because it provides all the possible split points that fall between the ages in the original list. When working with split points, it's important to consider the specific context and criteria for dividing the data.
To know more about split point here
https://brainly.com/question/12413130
#SPJ4
if the length of a rectangle is decreased by 4 cm and the width is increased by 5 cm, the result will be a square. the area of this square will be 40cm^2 greater than the area of the rectangle. Find the area of the rectangle.
Answer: 30 cm^2.
Step-by-step explanation:
Let the original length of the rectangle be l and its width be w. Then, according to the problem:
(l - 4) = (w + 5) (equation 1)
Also, the area of the square is 40 cm^2 more than the area of the rectangle. Mathematically, we can represent this as:
(l - 4 + 5)^2 = lw + 40
Simplifying the left-hand side and substituting equation 1, we get:
l^2 - 2lw + w^2 = lw + 40
l^2 - 3lw + w^2 - 40 = 0
(l - 8)(l - 5) = 0
Therefore, l = 8 or l = 5. If we substitute l = 8 into equation 1, we get:
w = (l - 4) - 5 = -1
This is not a valid solution since the width cannot be negative. Therefore, the only valid solution is l = 5, which gives:
w = (l - 4) + 5 = 6
So the area of the rectangle is:
A = lw = 5 x 6 = 30 cm^2.
Answer:
steps explanations: x - 4 = y + 5 (sides of a square)
(x - 4)(y + 5) = 40
Which gives;
(y + 5) (y + 5) = 40
y² + 10y + 25 = 40
y² + 10y + 25 - 40 = 0
y² + 10y - 15 = 0
a=1 b=10 and c=-15
Are the expressions -0.5(3x + 5) and
-1.5x + 2.5 equivalent? Explain why or why not.
These expression is not true .
What is a mathematical expression?
A mathematical expression is a sentence that consists of at least two numbers or variables, the expression itself, at least one arithmetic operation, and the expression itself. Any one of the following mathematical operations could be used: addition, subtraction, multiplication, or division.
For instance, the expression x + y is an expression with the addition operator placed between the terms x and y. Mathematicians utilize two different sorts of expressions: algebraic and numeric. Numeric expressions only contain numbers; algebraic expressions additionally incorporate variables.
-0.5(3x + 5) and -1.5x + 2.5 equivalent.
by distributing the 0.5 = -1.5x + 2.5
= -1.5x + 2.5
= 0.5(3*2 + 5 )
= - 1.5 * 2 + 2.5
= - 3 - 2.5 = -3 + 2.5
- 5. 5 = 0.5
this is not true. these expression is not true .
Learn more about expression
brainly.com/question/14083225
#SPJ1
Solve each of the following systems by the Method of Elimination. These two should be relatively easy. Make sure to understand why. (a) x-y 7 (b) 2x+5y = 3 x+ y=5 -2x-y= 5
A) The solution of the system x-y = 7, x+y = 5 is (6, -1)
B) The solution of the system 2x+5y = 3, -2x-y= 5 is (-16/3, 13/3)
A) To solve by the elimination method , we add the left-hand sides and right-hand sides of the two equations separately, as follows,
(x - y) + (x + y) = 7 + 5
2x = 12
x = 6
(x + y) - (x - y) = 5 - 7
2y = -2
y = -1
Therefore, the solution to the system is (x, y) = (6, -1).
B) To solve by the method of elimination, we can multiply the first equation by 2 to eliminate the x term, as follows,
2x + 5y = 3
-4x - 2y = 10
Adding these two equations, we get,
3y = 13
y = 13/3
Substituting y = 13/3 into the first equation, we get,
2x + 5(13/3) = 3
2x = -32/3
x = -16/3
Therefore, the solution to the system is (x, y) = (-16/3, 13/3)
Learn more about elimination method here
brainly.com/question/14619835
#SPJ4
The given question is incomplete, the complete question is:
Solve each of the following systems by the Method of Elimination A) x-y = 7, x+y = 5 B) 2x+5y = 3, -2x-y= 5
Which value will be assigned to z in line 12 under static sexping? (b) Which value will be assigned to 2 in line 12 under dynamic scoping? I might be instructive to draw the runtime stack for different times of the execution. Inut it is not strictly required. Draw the runtime stack after each line executes! Exercise 3. Parameter Passing Consider the following block. Ansune static scaping { int y: int z; - 7 { int (int a) 4 yari: return (yta) 1 int g(int x) { y = f(x+1)+1; 2:- 1( x3): return (z+1) } 2 :- g(y2): : 12 13 14 is) What are the values of y and 2 at the end of the following block under the assumption that both parameters a und x repassed: la) Call-by-Name (h) Calltyy Need It might be instructive to draw the runtime stack for differcut times of the execution, but it is not strictly required Draw the runtime stack after each line executes
The runtime stack for dynamic scoping at the end of the block would be:
Under static scoping, the value of z in line 12 will be 7. Under dynamic scoping, the value of z in line 12 will be the value of y in line 2, which is equal to f(x+1)+1. The values of y and z in the end of the block will differ depending on the parameter passing method used.
For call-by-name, the value of y at the end of the block will be f(x+1)+1 and the value of z will be f(x+1)+1+1. For call-by-need, the value of y will be f(x+1)+1 and the value of z will be f(x+1)+1+1.
It might be instructive to draw the runtime stack for different times of the execution, but it is not strictly required. The runtime stack for static scoping at the end of the block would be:
The runtime stack for dynamic scoping at the end of the block would be:
1. The table shows the Total Expenses y (in dollars) of the College or University for year 2020-2021 and 2021-2022. Mine it's 21,211
a) Write a function that represents the Total Expenses y (in dollars) of that College or University you would like to attend after t years.
b) Use the function to estimate the Total Expenses your first year of school. *This year (t) is not the same for everyone since there are 8th graders to 11th graders in the class.
c) Sketch a graph (by hand) to model your function.
d) Identify the y-intercept and asymptotes of the graph. Find the domain and range of your function. Then describe the end behavior of the function.
Answer:
a) We can use the given data to find the rate of change (slope) of the expenses over one year, and then use it to write the equation of a line in slope-intercept form:
Slope m = (Total Expenses in 2021-2022 - Total Expenses in 2020-2021) / 1 year
m = (23,500 - 21,211) / 1 = 2,289
Using the point-slope form of a line, we can write the equation as:
y - 21,211 = 2,289(t - t1), where t1 is the year 2020-2021.
Simplifying, we get:
y = 2,289t + 18,922
b) To estimate the Total Expenses for your first year of school, you need to know what year you will start. Let's say you will start in 2024-2025, which is 3 years from 2021-2022.
Then, plugging in t = 3 into the equation we just found, we get:
y = 2,289(3) + 18,922 = 23,789
So the estimated Total Expenses for your first year of school would be $23,789.
c) The graph of the function y = 2,289t + 18,922 is a straight line with a positive slope of 2,289. It passes through the point (0, 18,922) on the y-axis, and it will extend indefinitely in both directions.
d) The y-intercept of the graph is the point (0, 18,922), which represents the Total Expenses for the year 2020-2021. There are no vertical asymptotes, but the graph will approach a horizontal asymptote as t goes to infinity, since the expenses cannot increase indefinitely. The domain of the function is all real numbers, and the range is all values greater than or equal to 18,922. As t increases, the function increases without bound, so the end behavior is that the graph goes up to the right.
There are two coins in a bin. When one of them is flipped it lands on heads with probability 0.6 and when the other is flipped, it lands on heads with probability 0.3. One of these coins is to be chosen at random and then flipped. a) What is the probability that the coin lands on heads? b) The coin lands on heads. What is the probability that the chosen coin was the one that lands on heads with probability 0.6?
When one of the coin is flipped it lands on heads with probability 0.6 and when the other is flipped, it lands on heads with probability 0.3, then the probability that the coin lands on heads is 0.45 and the coin lands on heads but the probability that the chosen coin was the one that lands on heads with probability 0.6 is 0.67.
a) The probability of getting heads, we can use the law of total probability.
There are two coins, and each has a probability of landing on heads. So we can calculate the probability of getting heads by weighting each coin's probability by its probability of being chosen.
Therefore,
P(heads) = P(heads from coin 1) * P(choose coin 1) + P(heads from coin 2) * P(choose coin 2)
Plugging in the values, we have:
P(heads) = 0.6 * 0.5 + 0.3 * 0.5 = 0.45
Therefore, the probability of getting heads is 0.45.
b) The probability that the chosen coin was the one that lands on heads with probability 0.6, given that the coin lands on heads, we need to use Bayes' theorem. Specifically, we have:
P(choose coin 1 | heads) = P(heads from coin 1 | choose coin 1) * P(choose coin 1) / P(heads)
Plugging in the values, we have:
P(choose coin 1 | heads) = 0.6 * 0.5 / 0.45 = 0.67
Therefore, the probability that the chosen coin was the one that lands on heads with probability 0.6, given that the coin lands on heads, is 0.67.
To practice more questions about probability:
https://brainly.com/question/25870256
#SPJ11
There are 1200 students in a school if 780 of them are girls what is the percentage of boys in the school?
We divide the number of boys by the total number of students (1200) and multiply by 100. Percentage of boys = (420/1200) x 100% = 35%.
To find the percentage of boys in the school, we need to subtract the number of girls from the total number of students, then divide by the total number of students and multiply by 100 to get the percentage.
Number of boys = total number of students - number of girls
Number of boys = 1200 - 780
Number of boys = 420
Percentage of boys = (number of boys / total number of students) x 100
Percentage of boys = (420 / 1200) x 100
Percentage of boys = 35
Therefore, the percentage of boys in the school is 35%.
Learn more about percentage here: brainly.com/question/29306119
#SPJ4
in the figure below, mL2= 138, find mL1, mL3, and mL4
Answer:
Step-by-step explanation:
Find ∠1:
∠2 + ∠1 = 180 (angles on a straight line are supplementary)
138 + ∠1 = 180
∠1 = 42°
Find ∠4:
∠4 =∠2 = 138° (vertically opposite angles are equal)
Find ∠3:
∠3 = ∠1 = 42° (vertically opposite angles are equal)
Someone please help I need the answer to the 7 questions the image is below
a) The Name of the angle of elevation is ∠c = 83.3°
b) The Name of the Hypotenuse side is AC
c) The Name of the Opposite side is AB
What is the elevation angle?The angle formed between the line of sight and the horizontal is known as the angle of elevation. The angle created is an angle of elevation if the line of sight is upward from the horizontal line.
We can use the tangent ratio to determine the angle of elevation:
tan(angle of elevation) = opposite/adjacent
tan(angle of elevation) = 29.25/4.75
tan(angle of elevation) = 6.157
The inverse tangent (tan⁻¹) both sides, we obtain:
angle of elevation = tan⁻¹(6.157)
Using a calculator, we get:
angle of elevation ≈ 81.3 degrees (rounded to the nearest tenth)
The elevation angle is roughly 81.3 degrees.
d) The Name of the Adjacent side is BC
e) The Trig Ratio I will be using is Tan θ = Sin θ/Cos θ because we are
given the side Opposite Side & Adjacent Side
To know more about elevation angle visit:-
brainly.com/question/21137209
#SPJ1
The equation y = 1.55x + 110,419 approximates the total cost, in dollars, of raising a child in the united states from birth to 17 years, given the household’s annual income, x.
What is the approximate total cost of raising a child from birth to 17 years in a household with an annual income of 80,321
Answer:
he cost to raise a child from birth to 17 years in a household is $194119.
Step-by-step explanation:
Important information:
The equation y = 1.55x + 110,419
The annual incoem is $54,000
Calculation of the cost:
y = 1.55(54,000) + 110419
y = 83700 + 110419
y = $194119
Which two angles in the triangles below are complementary?
I NEED HELPPPPPPPP
Answer:
Step-by-step explanation:
Refer to attached diagram
∠CAD = 180 - (110 + 35) = 35° (angle sum triangle = 180°)
∠BCA = 180 -110 = 70° (straight angle = 180°)
∠BAC = 180 - (55 + 70) = 55° (angle sum triangle = 180°)
∠CAD + ∠BAC = 90° (complementary)