Converting
What is 3.4 hours in hours and minutes?

Answers

Answer 1

By answering the presented questiοn, we may cοnclude that 0.4 οf an expressiοns hοur is 0.4 x 60 = 24 minutes in this situatiοn. As a result, 3.4 hοurs equals 3 hοurs and 24 minutes.

What is expressiοn ?

An expressive in mathematics is a collection of numbers, variables, and complicated mathematical operations (such as addition, subtraction, multiplication, division, multiplicands, and others) that convey a quantity's value. Expressions can be as straightforward as "3 + 4" or as complex as "(3x2 - 2) / (x + 1)". They could also include functions like "sin(x)" or "lg(y)".

The real way to evaluate an expression is to insert the variables with their values and carry out the arithmetic operations in the order specified. For instance, the phrase "3x + 5" means 3(2) + 5 = 11 if x = 2. In mathematics, expressions are typically used to describe actual situations, build equations, and decompose challenging mathematical diagrams.

3 hοurs and 24 minutes is cοmparable tο 3.4 hοurs.

Yοu may separate the full number (which represents the hοurs) frοm the decimal tο cοnvert decimal hοurs tο hοurs and minutes (which represents the fractiοn οf an hοur in minutes).

0.4 οf an hοur is 0.4 x 60 = 24 minutes in th

is situation. As a result, 3.4 hours equals 3 hours and 24 minutes.

To know more about expressions visit :-

brainly.com/question/14083225

#SPJ1


Related Questions

Need Help!

A poster is to have a total area of 245 cm2. There is a margin round the edges of 6 cm at the top and 4 cm at the sides and bottom where nothing is printed.

What width should the poster be in order to have the largest printed area? **answer does not contain variables**

Answers

The largest printed area of the poster would be when the width and height of the poster are equal. To find the width of the poster, we need to subtract the total area of the margins from the total area of the poster.

The total area of the margins is 6 cm x 4 cm + 4 cm x 6 cm = 88 cm2.

Therefore, 245 cm2 - 88 cm2 = 157 cm2.

We can then use the formula A = W x H, where A is the area and W and H are the width and height of the poster, respectively.

Therefore, 157 cm2 = W x W.

We can solve for W by taking the square root of both sides.

Therefore, W = √157 = 12.5 cm.

Therefore, the width of the poster should be 12.5 cm in order to have the largest printed area.

Which set of ordered pairs does not represent a function?

1. {(6,5), (3, 5), (−2, 8), (-9,4)}

2. {(-6, -1), (3, 1), (4, −4), (8, 1)}

3. {(-1,9), (-8, 5), (-1, 3), (-9, 1)}

4. {(5,9), (2,-5), (-1,-5), (0, 1)}

Answers

The set of ordered pairs does not represent a function is the one in the third option.

{(-1,9), (-8, 5), (-1, 3), (-9, 1)}

Which set of ordered pairs does not represent a function?

A relation maps elements from one set, the domain, into elements of other set, the range.

Such that these mappings are of the form (x,y).

A function is a relation where each input is mapped into a single one output, then if you see a relation that has two points with the same value of x and different values of y, then that relation is not a function.

Particularly, if you look at the third option:

{(-1,9), (-8, 5), (-1, 3), (-9, 1)}

You can see that the first and second points have the same input and different outputs, then this is not a function, and that is the correct answer.

Learn more about functions at:

https://brainly.com/question/2328150

#SPJ1

When I first look at an equation, HOW DO I KNOW which method to use to solve it?
for example:

-4(7j+2) = 10

What do I look for (by looking at it) to know if I should start to solve it by distributing, or just use division?

Please help! I am really confused. Thank you

Answers

Answer:

j = - 9/14

Step-by-step explanation:

-4(7j+2) = 10

Distributing First

-28j - 8 = 10

Try to get the variable on one side.

-28j = 18

Divide both sides by -28

j = -18/28 = - 9/14

Last years freshman class at Big State university totaled 5,324 students

URGENT

Answers

The amount a student received in merit scholarships was $3,456 ($478 per student). The cost of full tuition was $4,200. This means that the difference between the amount of the scholarship and the cost of tuition was $744.

What is amount ?

Amount is a numerical value that represents a quantity of something. It is used to measure the size, amount, or degree of something, often in terms of money, time, or distance. Amounts are usually expressed in a specific unit, such as dollars, minutes, or kilometers. Amounts can also refer to the total number of something, such as the amount of people in a room or the amount of items in a box. Amounts can also be used to describe a portion or percentage of something, such as the amount of a discount or the amount of interest earned.  

To find the percentage of students who did not receive enough to cover full tuition, we need to divide the difference ($744) by the amount of the scholarship ($3,456). This gives us a percentage of 21.5%.

Rounded to the nearest whole percent, the answer is 22%. This means that 22% of students who received a merit scholarship did not receive enough to cover full tuition.

To learn more about amount

https://brainly.com/question/29550019

#SPJ1

Sorry if photo is side ways or upside down

Answers

Hi! For question 4:

1 gallon = 8 pints, therefore 2 gallons = 16 pints.

10 members = 10 pints drank, which means 16-10=6 pints left (A).


For question 5:
PART A
1 step = 1 meter
1km = 1,000 meter, hence
5km = 5,000 steps.


PART B
1 step = 0.5 meters
1km = 2,000 steps, hence
5km = 10,000 steps.

Hope this helped you!

The area of a trapezium is 156cm2, the parallel sides are 17cm and 35cm respectively. What is the height of the trapezium​

Answers

Answer:

  6 cm

Step-by-step explanation:

You want the height of a trapezium with bases 17 cm, 35 cm and area 156 cm².

Area formula

The formula for the are of a trapezium is ...

  A = 1/2(b1 +b2)h

Filling in the given values, we have ...

  156 = 1/2(17 +35)h = 26h

  6 = h . . . . . . . . . . divide by 26

The height of the trapezium is 6 cm.

Answer:

6cm

Step-by-step explanation:

To find:-

The height of the trapezium.

Answer:-

We are here given that the area of the trapezium is 156cm² and two of the parallel sides are 17cm and 35cm .We are interested in finding out the height of the trapezium.

The area of the trapezium is given by the formula,

[tex]:\implies \sf Area =\dfrac{1}{2}\times (s_1+s_1)\times h \\[/tex]

where s1 and s2 are the || sides of the trapezium and h is the height of the trapezium.

Now on substituting the respective values in the given formula, we have;

[tex]:\implies \sf 156cm^2 =\dfrac{1}{2} (17cm+35cm)\times h \\[/tex]

[tex]:\implies \sf 156cm^2(2) = 52cm (h) \\[/tex]

[tex]:\implies \sf h =\dfrac{156(2)}{52} cm\\[/tex]

[tex]:\implies \sf \pink{ height = 6 cm }\\[/tex]

Hence the height of the trapezium is 6cm .

Which ordered pair maximizes the objective function p=3x+8y

(0,0)
(2,7)
(5,6)
(8,1)

Answers

Answer:

P(5,6) = 63

Step-by-step explanation:

Test each point to see which ordered pair maximizes the objective function:

(0,0): p = 3(0) + 8(0) = 0

(2,7): p = 3(2) + 8(7) = 6 + 56 = 62

(5,6): p = 3(5) + 8(6) = 15 + 48 = 63

(8,1): p = 3(8) + 8(1) = 24 + 8 = 32

Hence, (5,6) is the ordered pair that maximizes the objective function.

Which expressions are equivalent to 8(3/4y -2)+6(-1/2+4)+1

Answers

Answer: 6y + 6

Step-by-step explanation:

To simplify the expression 8(3/4y -2) + 6(-1/2+4) + 1, we can follow the order of operations (PEMDAS):

First, we simplify the expression within parentheses, working from the inside out:

6(-1/2+4) = 6(7/2) = 21

Next, we distribute the coefficient of 8 to the terms within the first set of parentheses:

8(3/4y -2) = 6y - 16

Finally, we combine the simplified terms:

8(3/4y -2) + 6(-1/2+4) + 1 = 6y - 16 + 21 + 1 = 6y + 6

Therefore, the expression 8(3/4y -2) + 6(-1/2+4) + 1 is equivalent to 6y + 6.

please help!!! i really need it

Answers

Step-by-step explanation:

Lisa started with $25 on her prepaid debit card. After her first purchase, she had $22.90 left. Therefore, she spent:

$25 - $22.90 = $2.10

We know that the price of the ribbon was 14 cents per yard. To find out how many yards Lisa bought, we can set up an equation:

$2.10 ÷ $0.14/yd = 15 yards

Therefore, Lisa bought 15 yards of ribbon with her prepaid debit card.

15 yards
i hope this helps

can someone help me please!

Answers

The median of the data-set is of: 21 minutes.The lower quartile of the data-set is of 13 minutes.The upper quartile of the data-set is of 27 minutes.About 25% of the students ride the bus for less than 13 minutes.About 75% of the students ride the bus for less than 27 minutes.

What are the median and the quartiles of a data-set?

The median is the middle value of a data set when the values are arranged in order from lowest to highest (or highest to lowest). If there is an even number of values, then the median is the average of the two middle values. The median divides the data set into two halves, with half of the values being below the median and half of the values being above the median.

The first quartile, denoted as Q1, is the value that separates the lowest 25% of the data from the rest of the data. The second quartile, denoted as Q2, is the median of the data set. The third quartile, denoted as Q3, is the value that separates the lowest 75% of the data from the rest of the data.

The data-set has in this problem has two-halves of five elements, divided by the number 21, hence the median and the quartiles are given as follows:

The median of the data-set is of: 21 minutes.The lower quartile of the data-set is of 13 minutes. -> Median of the first five elements.The upper quartile of the data-set is of 27 minutes. -> Median of the last five elements.

More can be learned about the median of a data-set at https://brainly.com/question/3514929

#SPJ1

Using a different map that is missing any indication of scale, you measure the distance from Point C
to Point D as five inches, but it is 500 miles on the ground. Prepare the following two expressions
of scale for the map:
(a) Fractional
(b) Written
SHOW YOUR WORK! This includes the potential for partial value, if incorrect.
Simplify your scale (e.g., reduce to 1 inch = x miles, not 5 inches = 250 miles).

Answers

Answer:

To calculate the scale of the map, we can use the following formula:

Scale = Actual distance / Map distance

(a) Fractional scale:

The actual distance between Point C and Point D is 500 miles, and the distance on the map is 5 inches. Therefore, the fractional scale can be calculated as:

Scale = 500 miles / 5 inches

Scale = 100 miles per inch

So the fractional scale of the map is 1 inch = 100 miles.

(b) Written scale:

To express the scale in written form, we can use the ratio of inches to miles. Since 1 inch represents 100 miles, we can write the scale as:

1 inch represents 100 miles

Alternatively, we can simplify the scale to a more common ratio by dividing both sides by 100:

1/100 inch represents 1 mile

Therefore, the written scale of the map is 1/100 inch = 1 mile.

divide 14 hours and 40 minutes by 5
you must give your answer in hours and minutes

Answers

Answer:

2 hours and 56 minutes.

Step-by-step explanation:

To divide 14 hours and 40 minutes by 5, we need to convert everything to minutes first.

14 hours is equal to 14 x 60 = 840 minutes.

So, 14 hours and 40 minutes are equal to 840 + 40 = 880 minutes.

Dividing 880 minutes by 5 gives us:

880 ÷ 5 = 176 minutes

Now, we need to convert the answer back to hours and minutes.

There are 60 minutes in 1 hour, so we can find how many hours are in 176 minutes by dividing by 60:

176 ÷ 60 = 2 with a remainder of 56.

So, the answer is 2 hours and 56 minutes.

Question 4 X Suppose that starting today, you make deposits at the beginning of each quarterly period for the next 40 years. The first deposit is for 400, but you decrease the size of each deposit by 1% from the previous deposit. Using an nominal annual interest rate of 8% compounded quarterly, find the future value (i.e. the value at the end of 40 years) of these deposits. Give your answer as a decimal rounded to two places (i.e. X.XX).

Answers

if we make quarterly deposits and invest them at an nominal annual interest rate of 8% compounded quarterly for 40 years, we will have $143,004.54 at the end of the 40 years.

The first step in solving this problem is to calculate the amount of each quarterly deposit. We know that the first deposit is $400, and each subsequent deposit decreases by 1% from the previous deposit. This means that each deposit is 99% of the previous deposit. To calculate the size of each deposit, we can use the following formula:

deposit_ n = deposit_(n-1) * 0.99

Using this formula, we can calculate the size of each quarterly deposit as follows:

deposit_1 = $400

deposit_2 = deposit_1 * 0.99 = $396.00

deposit_3 = deposit_2 * 0.99 = $392.04

deposit_4 = deposit_3 * 0.99 = $388.12

...

We can continue this pattern for 40 years (160 quarters) to find the size of each quarterly deposit.

Next, we need to calculate the future value of these deposits using an nominal annual interest rate of 8% compounded quarterly. We can use the formula for compound interest to calculate the future value:

[tex]FV = PV * (1 + r/n)^(n*t)[/tex]

where FV is the future value, PV is the present value (which is zero since we are starting with deposits), r is the nominal annual interest rate (8%), n is the number of times the interest is compounded per year (4 since we are compounding quarterly), and t is the number of years (40).

We can substitute the values into the formula and solve for FV:

[tex]FV = $400 * (1 + 0.08/4)^(440) + $396.00 * (1 + 0.08/4)^(439) + $392.04 * (1 + 0.08/4)^(4*38) + ... + $1.64 * (1 + 0.08/4)^4[/tex]

After solving this equation, we get a future value of $143,004.54, rounded to two decimal places. This means that if we make quarterly deposits and invest them at an nominal annual interest rate of 8% compounded quarterly for 40 years, we will have $143,004.54 at the end of the 40 years.

This calculation highlights the power of compound interest over long periods of time. By making regular contributions and earning interest on those contributions, our investment grows exponentially over time. It also shows the importance of starting early and consistently contributing to an investment over time in order to achieve long-term financial goals.

To know more about quarterly deposit.  click here:

brainly.com/question/17218467

#SPJ4

a friend has an 81% average before a final exam. The score includes everything but the final, which counts for 15% of the grade. What is the minimum to earn 75% for the course?

Answers

Answer:

57

Step-by-step explanation:

Okay, So we have this person That has 81% average before the quiz. For a course That score includes everything, but the final, which counts for 25% of the course grade, was the best course grade you your friend can earn. Okay, The best course grade given to me makes me. Mhm. 100. So we have .81 times. Actually we'll keep this as 81, times .75 right Plus 100 times. Excuse ME, Time 0.25. This is equivalent to 81 times 0.75. Mhm. This is equivalent to 81 times .75 plus 100 times 0.25, Which equals 85.75%. Now that's for part one. Report to we have what is the minimum score? Turn to 75%. So we have 75 equal to 81 times 0.75 Plus X. Times zero 25. So 81 times 0.75 equals 60.75 75- is value mhm. Is equal to 14.25. So we have 0.25 x. And if we divide 14.25 over 0.25, we isolate X. So the minimum score to get a 75 is a 57

5 Mrs. Newsome bought a piece of fabric 142 centimeters long to make a quilt for her son's bedroom. She bought a piece of fabric 2 meters long for curtains. How could Mrs. Newsome find the total length, in centimeters, of both pieces of fabric? Multiply 2 by 2,000, then add 142. Add 2 and 142, then multiply by 100. Divide 142 by 100, then add 2,000. O Multiply 2 by 100, then add 142. B C​

Answers

Answer:

Step-by-step explanation:

To find the total length of both pieces of fabric in centimeters, we need to add the length of the first piece of fabric (142 cm) and the length of the second piece of fabric (2 meters).

However, we need to make sure that the units are consistent before we add the lengths. We can convert the length of the second piece of fabric from meters to centimeters by multiplying by 100. Therefore, the total length in centimeters is:

142 cm + 2 meters * 100 cm/meter = 142 cm + 200 cm = 342 cm

The option that correctly gives the answer is "Multiply 2 by 100, then add 142" (Option C).

2.35 [5] <$2.9> For the following code: Ibu $t0,($t1) sw $t0,($t2) Assume that the register $t1 contains the address 0x10000000 and the data at address is 0x11223344. 2.35.1 [5] <$2.3, 2.9> What value is stored in 0x10000004 on a big-endian machine? 2.35.2 [5] <$2.3, 2.9> What value is stored in 0x10000004 on a little-endian machine?

Answers

The value stored in 0x10000004 on a big-endian machine is given by 0x00000011.

The word "endianness" refers to the arrangement of bytes as they are stored in computer memory. Endianness is classified as big or little depending on which value is stored first.

The "big end" (the most important item in the sequence) is put first and at the lowest storage address in a big-endian order. The "small end" (the least important item in the sequence) is put first in a little-endian order.

(1)In Big-endian Machine, first byte of multi-byte data will be stored first(at lower memory address)

Address                 Data

0x10000000            0x11

0x10000001            0x22

0x10000002            0x33

0x10000003            0x44

---------------------------------------------------------------------

lbu $t0, 0($t1)

Load unsigned byte in Register $t0 at address 0x10000000

Here byte at address 0x10000000 is 0x11

$t0 = 0x00000011

----------------------------------------------------

sw $t0, 0($t2)

Store a word(4 bytes) from Register $t0 to memory address 0x10000004

value stored in 0x10000004 is 0x00000011

--------------------------------------------------------------------------------

(2)In Little-endian Machine, last byte of multi-byte data will be stored first(at lower memory address)

Address                 Data

0x10000000            0x44

0x10000001            0x33

0x10000002            0x22

0x10000003            0x11

---------------------------------------------------------------------

lbu $t0, 0($t1)

Load unsigned byte in Register $t0 at address 0x10000000

Here byte at address 0x10000000 is 0x44

$t0 = 0x00000044

----------------------------------------------------

sw $t0, 0($t2)

Store a word(4 bytes) from Register $t0 to memory address 0x10000004

value stored in 0x10000004 is 0x00000044.

Learn more about Big-endian machine:

https://brainly.com/question/30848621

#SPJ4

I need the answer to this problem

Answers

Answer:

x = 4

Step-by-step explanation:

If we use A*B = C*D we get 2*6 = 3*x which is 12 = 3x. Dividing both sides by 3 you get 4 = x

LetY1,Y2,Yn denote a random sample of size n from a population whose density is given by f(y)={αyα−1θα,0≤y≤θ0,elsewhere,where α>0 is a known, fixed value, but θ is unknown. Consider the estimator ˆθ=max(Y1,Y2,...Yn).(a) Show that ˆθ is a biased estimator for θ.(b) Find a multiple of ˆθ that is an unbiased estimator of θ.(c) Derive MSE(ˆθ).

Answers

(a) θ is a biased estimator for θ.

(b) (α+1)Y/α is an unbiased estimator of θ.

(c) MSE(θ) = αθ^2/[(α+1)^2(α+2)]

(a) To show that θ is a biased estimator for θ, we need to show that E(θ) ≠ θ.

Using the definition of the maximum function, we have

P(θ ≤ y) = P(Y1 ≤ y, Y2 ≤ y, ..., Yn ≤ y) = (F(y))^n

where F(y) is the cumulative distribution function of Y.

Differentiating both sides with respect to y, we get:

f(θ) = n(F(θ))^(n-1)f(θ)

Simplifying, we get

F(θ) = (1/n)^(1/(n-1))

Using this result, we can find the expected value of θ

E(θ) = ∫₀^∞ θf(θ)dθ = ∫₀^θ θαθ^α-1dθ = αθ/(α+1)

Thus, E(θ) ≠ θ, which means that θ is a biased estimator for θ.

(b) To find a multiple of θ that is an unbiased estimator of θ, we can use the method of moments.

We know that the population mean of Y is

μ = ∫₀^θ yf(y)dy = αθ/(α+1)

The sample mean is

Y = (Y1+Y2+...+Yn)/n

Equating these two expressions and solving for θ, we get

θ = (α+1)Y/α

Thus, (α+1)Y/α is an unbiased estimator of θ.

(c) The mean squared error (MSE) of θ can be written as

MSE(θ) = E[(θ - θ)^2]

Expanding the square and using the linearity of expectation, we have

MSE(θ) = E[θ^2] - 2θE[θ] + E[θ]^2

We already know that E[θ] = αθ/(α+1).

To find E[θ^2], we can use the fact that θ = max(Y1,Y2,...Yn)

P(θ ≤ y) = P(Y1 ≤ y, Y2 ≤ y, ..., Yn ≤ y) = (F(y))^n

Differentiating both sides with respect to y, we get

f(θ) = n(F(θ))^(n-1)f(θ)

Using this result, we can find E[θ^2]

E[θ^2] = ∫₀^∞ θ^2f(θ)dθ = ∫₀^θ θ^2αθ^α-1dθ = αθ^2/(α+2)

Substituting these expressions into the MSE formula, we get

MSE(θ) = αθ^2/(α+2) - 2θ(αθ/(α+1)) + (αθ/(α+1))^2

Simplifying, we get

MSE(θ) = αθ^2/[(α+1)^2(α+2)]

Learn more about biased estimator here

brainly.com/question/30982574

#SPJ4

Assume the weight of a randomly chosen American passenger car is a uniformly distributed random variable ranging from 1,557 pounds to 4,665 pounds.(e) What is the probability that a vehicle will weigh between 1,946 and 4,455 pounds? (Round your answer to 4 decimal places.)

Answers

The probability that a vehicle will weigh between 1,946 and 4,455 pounds is 0.8076.

To solve this problem, we need to find the probability that a randomly chosen car weighs between 1,946 and 4,455 pounds. Since weight is uniformly distributed, we know that the probability density function is constant over the entire range of possible values.

First, we need to find the total range of possible values:

Range = maximum weight - minimum weight

Range = 4,665 - 1,557

Range = 3,108

Next, we need to find the range of values that fall between 1,946 and 4,455:

Target range = 4,455 - 1,946

Target range = 2,509

Finally, we can calculate the probability of a randomly chosen car falling within this target range:

Probability = Target range / Range

Probability = 2,509 / 3,108

Probability = 0.8076 (rounded to 4 decimal places)

Learn more about probability here: brainly.com/question/30034780

#SPJ4

Question 2 (2 points) ✓ Saved
In the news, you hear "tuition is expected to increase by 12% next year." If tuition
this year was $5,500 per year, what will it be next year?
660
6160
4840
Cannot be solved.

Answers

Answer: 6,160

Step-by-step explanation:

Immediately, without even doing any math, the only logical answer would be 6160. This is because the current tuition is 5,500 and it is increasing so the answer cannot be lower.

However, mathematically you can prove this by turning 12% into a decimal and multiplying it by 5,500. 12% could be converted to .12 and because it is increasing you must add 1, or 100%, since that is what it started with. 5,500 x 1.12 = 6,160.

Help pleaseeeeeeeeee!

Answers

Answer:

y = 0.8x

Step-by-step explanation:

machine fills 24 jars in 30 seconds , then

fills 1 jar in [tex]\frac{24}{30}[/tex] = 0.8 seconds

thus number of jars filled in x seconds is

y = 0.8x

Can the binomial distribution be approximated by a normal distribution? n = 31, p = 0.9 Explain why or why not.​

Answers

Therefore, we can use the normal distribution with mean 27.9 and standard deviation 1.67 to approximate the binomial distribution with n = 31 and p = 0.9.

What is binomial distribution?

The binomial distribution is characterized by two parameters: the number of trials, denoted by n, and the probability of success on each trial, denoted by p. The probability of obtaining exactly k successes in n trials is given by the binomial probability mass function:

P(k) = (n choose k) * [tex]p^{k}[/tex] * [tex](1-p)^{(n-k)}[/tex],

where (n choose k) is the binomial coefficient, which represents the number of ways to choose k items from a set of n distinct items.

Given by the question.

Yes, the binomial distribution with n = 31 and p = 0.9 can be approximated by a normal distribution.

The conditions for a binomial distribution to be approximated by a normal distribution are as follows:

n*p >= 10

n*(1-p) >= 10

In this case, n = 31 and p = 0.9, so:

np = 310.9 = 27.9 >= 10

n*(1-p) = 31*0.1 = 3.1 >= 10

Condition 1 is satisfied, but condition 2 is not. Therefore, it is recommended to use a correction factor to improve the approximation.

The correction factor is given by:

[tex]\sqrt[2]{np(1-p)}[/tex]

Substituting the values, we get:

[tex]\sqrt[2]{310.90.1}[/tex]= 1.67

The corrected values for mean and standard deviation are:

mean = np = 310.9 = 27.9

standard deviation = [tex]\sqrt[2]{np(1-p)}[/tex] = 1.67

To learn more about probability:

https://brainly.com/question/11234923

#SPJ1

If r and s are constants and r² +rx + 12 is equivalent to (x+3)(x + 5), what is the value of r?

F.:3
H. 7
J. 12
K. Cannot be determined from the given information

Answers

Answer:

H. 7

Step-by-step explanation:

Given x² + rx + 12 is equivalent to (x + 3)(x + s), equate the two expressions and expand the right side of the equation:

[tex]\begin{aligned}x^2+rx+12&=(x + 3)(x + s)\\ x^2+rx+12&=x^2 + sx + 3x + 3s\\x^2+rx+12&=x^2 + (s+3)x + 3s\end{aligned}[/tex]

To find the value of r, first find the value of s.

The constant term of the right-hand side must be equal to the constant term of the left-hand side. Therefore:

[tex]\implies 3s = 12[/tex]

Solve for s by dividing both sides of the equation by 3:

[tex]\implies s = 4[/tex]

Compare the coefficients of the terms in x:

[tex]\implies r = s + 3[/tex]

Substitute the value of s into the equation and solve for r:

[tex]\begin{aligned} \implies r &= s + 3\\&= 4 + 3\\&= 7\end{aligned}[/tex]

Therefore, the value of r is 7.

Answer:

[tex]\large\boxed{\sf r = 7 }[/tex]

Step-by-step explanation:

Correct question:- If r and s are constants and r² +rx + 12 is equivalent to (x+3)(x + s), what is the value of r?

Here we are given that , the expression (x+3)(x+s) is equal to r² + rx + 12 .

Firstly, expand the expression (x+3)(x+s) as ,

[tex]\implies (x+3)(x+s) \\[/tex]

[tex]\implies x(x+s)+3(x+s) \\[/tex]

[tex]\implies x^2 + xs + 3x + 3s \\[/tex]

Take out x as common,

[tex]\implies x^2 + (3+s)x + 3s \\[/tex]

Now according to the question,

[tex]\implies x^2 + (3+s)x + 3s = r^2 + rx + 12\\[/tex]

On comparing the respective terms , we get,

[tex]\implies r = 3 + s \\[/tex]

[tex]\implies 3s = 12 \\[/tex]

Solve the second equation to find out the value of s , so that we can substitute that in equation 1 to find "r" .

[tex]\implies 3s = 12 \\[/tex]

[tex]\implies s =\dfrac{12}{3}=\boxed{4} \\[/tex]

Now substitute this value in equation (1) as ,

[tex]\implies r = 3 + s \\[/tex]

[tex]\implies r = 3 + 4 \\[/tex]

[tex]\implies \underline{\underline{ \red{ r = 7 }}} \\[/tex]

and we are done!

the solution set is
5r+20/10=3r-6/3

Answers

Answer:

r = -2

Step-by-step explanation:

5r + 20/10 = 3r -6/3

5r + 2 = 3r - 2

2r + 2 = -2

2r = -4

r = -2

Answer: r = -2

Step-by-step explanati

CAN SOMEONE HELP WITH THIS QUESTION?✨

Answers

Step-by-step explanation:

it was not clear if an average change rate would be sufficient, or if you needed an immediate change rate (as I also don't know if you covered derivatives already or not).

so, it would be helpful, if you could put a message to an answer that was not giving you what you need.

so, here now an answer for an immediate change rate (hopefully that is what you need) :

we have a right-angled triangle.

the direct line of sight (the direct distance between police and red car) is the Hypotenuse (the baseline opposite of the 90° angle).

the 50 ft and 180 ft are the legs.

Pythagoras gives us the length of the Hypotenuse :

Hypotenuse² = 50² + 180² = 2500 + 32400 = 34,900

Hypotenuse = sqrt(34900) = 186.8154169... ft

in general terms let's say x is the distance of the cop to the road, y is the distance on the road to the crossing point with the distance cop to road, and z is the line of sight distance between the red car and the cop (the Hypotenuse).

x² + y² = z²

now, the first derivative of distance is the change of distance = speed.

then dy/dt (= y') is how fast the car is traveling down the road. dx/dt (= x') is how fast the cop is traveling toward the road. and dz/dt (= z') is how fast the distance between the cop and the car is changing.

now, we take the derivative of our equation

x² + y² = z² with respect to time, variable by variable :

d(x² + y² = z²)/dt =

dx²/dx × dx/dt + dy²/dy × dy/dt = dz²/dz × dz/dt

that gives us the equation

2x(dx/dt) + 2y(dy/dt) = 2z(dz/dt)

x(dx/dt) + y(dy/dt) = z(dz/dt)

from the problem we know x (50 ft), y (180 ft), dz/dt (85 ft/s). we calculated z (the Hypotenuse = sqrt(34900), and since the cop is not moving, we know dx/dt = 0.

and we get

50ft×0ft/s + 180ft×(y') = sqrt(34900)ft×(85)ft/s

we solve for y' (the speed of the car on the road)

y' = sqrt(34900)×85/180 = 88.21839132... ft/s

≈ 88.22 ft/s

and now here the difference for an average change rate over the unrevealed of 1 second :

the radar measured the change of the distance (Hypotenuse) from 1 second ago to now.

so, 1 second ago, the distance was

186.8154169... + 85 = 271.8154169... ft

the 50 ft leg stays the same, but the 180 ft leg was (again via Pythagoras)

271.8154169...² = 50² + leg²

leg² = 271.8154169...² - 50² = 71,383.62088...

leg = 267.1771339... ft

so, the red car traveled

267.1771339... - 180 = 87.1771339... ft/s

as you can see, it is close, but there has to be a difference, as the average change rate is only an approximation to the immediate change rate.

6TH GRADE MATH PLS HELP TYSM

Answers

Answer:

m = 1

Step-by-step explanation:

Slope = rise/run or (y2 - y1) / (x2 - x1)

Pick 2 points (-1,0) (0,1)

We see the y increase by 1 and the x increase by 1, so the slope is

m = 1

f(s) = 3s + 2
p(s) = s^3+ 4s
Find (f • p)(-5)

Answers

The value of (f • p)(-5) is 1885 when functions are given as f(s) = 3s + 2 and p(s) = s³+ 4s.

What is function?

In mathematics, a function is a relation between a set of inputs and a set of possible outputs with the property that each input is related to exactly one output. It is often represented by an equation or formula, and can be visualized as a graph. Functions are widely used in various areas of mathematics, science, engineering, and other fields to model real-world phenomena and solve problems.

Here,

f(s) = 3s + 2

p(s) = s³+ 4s

To find (f • p)(-5), we need to first find f(-5) and p(-5), and then multiply them together. To find f(-5), we substitute -5 into the function f(s) and simplify:

f(-5) = 3(-5) + 2

= -13

To find p(-5), we substitute -5 into the function p(s) and simplify:

p(-5) = (-5)³ + 4(-5)

= -125 - 20

= -145

Now we can multiply f(-5) and p(-5) together to find (f • p)(-5):

(f • p)(-5) = f(-5) * p(-5)

= (-13) * (-145)

= 1885

To know more about function,

https://brainly.com/question/28193995

#SPJ1

Consider the quadratic function f(x) = x2 – 5x + 12. Which statements are true about the function and its graph? Select three options. The value of f(–10) = 82 The graph of the function is a parabola. The graph of the function opens down. The graph contains the point (20, –8). The graph contains the point (0, 0).

Answers

The true statements are:

The graph of the function is a parabola.

The graph contains the point (0, 0).

The graph does not contain the point (20, -8).

How to deal with quadratic equation?

The quadratic function is f(x) = x^2 - 5x + 12. Here are the statements that are true:

The value of f(-10) = 82:

To find f(-10), we substitute -10 for x in the function:

[tex]$$f(-10) = (-10)^2 - 5(-10) + 12 = 100 + 50 + 12 = 162$$[/tex]

Therefore, the statement "The value of f(-10) = 82" is false.

The graph of the function is a parabola:

Since the highest power of x in the function is 2, the graph of the function will be a parabola. Therefore, the statement "The graph of the function is a parabola" is true.

The graph of the function opens down:

The coefficient of [tex]$x^2$[/tex] in the function is positive (+1), which means the parabola opens upwards. Therefore, the statement "The graph of the function opens down" is false.

The graph contains the point (20, –8):

To see whether the point (20, -8) is on the graph of the function, we substitute x=20 into the function:

[tex]$$f(20) = (20)^2 - 5(20) + 12 = 400 - 100 + 12 = 312$$[/tex]

Since the y-coordinate of the point (20, -8) is not equal to 312, the statement "The graph contains the point (20, –8)" is false.

The graph contains the point (0, 0):

To see whether the point (0, 0) is on the graph of the function, we substitute x=0 into the function:

[tex]$$f(0) = (0)^2 - 5(0) + 12 = 12$$[/tex]

Since the y-coordinate of the point (0, 0) is equal to 12, the statement "The graph contains the point (0, 0)" is true.

Therefore, the true statements are:

The graph of the function is a parabola.

The graph contains the point (0, 0).

The graph does not contain the point (20, -8).

To know more about Quadratic equation visit:

brainly.com/question/30098550

#SPJ1

In a large study designed to compare the risk of cardiovascular disease (CVD) between smokers and nonsmokers, random samples from each group were selected. The sample proportion of people with CVD was calculated for each group, and a 95 percent confidence interval for the difference (smoker minus nonsmoker) was given as (-0.01, 0.04). Which of the following is the best interpretation of the interval? We are 95% confident that the difference in proportions for smokers and nonsmokers with CVD in the sample is between -0.01 and 0.04. We are 95% confident that the difference in proportions for smokers and nonsmokers with CVD in the population is between -0.01 and 0.04. We are 95% confident that the proportion of all smokers with CVD is greater than the proportion of all nonsmokers with CVD because the interval contains more positive values. The probability is 0.95 that for all random samples of the same size, the difference in the sample proportions for smokers and nonsmokers with CVD will be between -0.01 and 0.04. long Pa Docs The probability is 0.95 that there is no difference in the proportions of smokers and nonsmokers with CVD because o is included in the interval -0.01 and 0.04 D Submit hips..

Answers

The best interpretation of the confidence interval is We are 95% confident that the difference in proportions for smokers and nonsmokers with CVD in the population is between −0.01 and 0.04 that is option B.

Confidence interval is estimate of Parameter were parameter is difference in proportion of smokers and non smokers in population.

The percentage (frequency) of acceptable confidence intervals that include the actual value of the unknown parameter is represented by the confidence level. In other words, a limitless number of independent samples are used to calculate the confidence intervals at the specified degree of assurance. in order for the percentage of the range that includes the parameter's real value to be equal to the confidence level.

Most of the time, the confidence level is chosen before looking at the data. 95% confidence level is the standard degree of assurance. Nevertheless, additional confidence levels, such as the 90% and 99% confidence levels, are also applied.

Learn more about Confidence Interval:

https://brainly.com/question/17212516

#SPJ4

11/12 x 8/25 x 15/16 x 9/44

Answers

Exact form:

9/160

Decimal form:

0.05625
Other Questions
Which of the following statements are true?I. The sampling distribution of xx has standard deviation nn even if the population is not normally distributed.II. The sampling distribution of xx is normal if the population has a normal distribution.III. When nn is large, the sampling distribution of xx is approximately normal even if the the population is not normally distributed.I and III and IIIII and IIII, II, and IIINone of the above gives the complete set of true responses. David is working two summer jobs, making $13 per hour landscaping and making $8 per hour clearing tables. In a given week, he can work no more than 16 total hours and must earn no less than $160. Also, he must work at most 13 hours landscaping. If x represents the number of hours landscaping and y represents the number of hours clearing tables, write and solve a system of inequalities graphically and determine one possible solution. 5. What rhetorical device is used in the following quotation from the Bible? "Even *though I walk through the valley of the shadow of death, I fear no evil for you arewith me."O Rhetorical questionO AllusionAlliterationUnderstatement In a recrystallization, the crystals do not always form spontaneously after cooling, even though the solution is supersaturated. Which of the following will help crystals form? More than one answer may be correct.1. Scrape the inside of the Erlenmeyer flask with a glass rod below the surface of the solvent.2. Add a scrap of paper to nucleate the crystals.3. Add some crystals of the compound you are trying to crystallize.4. Add some crystals of any kind.5. Scrape the outside of the Erlenmeyer flask with a glass rod. a survey of u.s. manufacturers shows that 95 percent of respondents with indian operations plan on expanding, and none say they are leaving, in spite of widespread corruption in the country. what is primarily behind this new trend? The appearance of a gram-negative bacteria cell after the addition of the decolorizing agent (ethyl alcohol) in the Gram stain is _____.(a) purple(b) red(c) colorless(d) green. how to transfer data from one excel worksheet to another automatically vlookup? 4. supply chain management imagine you are tasked with inventory control for your plant. using your knowledge of inventory management, answer the following question. if you are managing inventory of finished goods, which source of control should you use? purchasing models and systems James have 18 litres of water. He poured unequally into 3 tankI. Poured three quarter of water from tank one into tank 2II. Poured half of the water that is now in tank 2 into tank 3III. Poured one third of water that is now in tank 3 into tank 1 28) The waiting time for the first claim from a good driver and the waiting time for the first claim from a bad driver are independent and follow exponential distributions with mean 6 years and 3 years, respectively. What is the probability that the first claim from a good driver will be filed within 3 years and the first claim from a bad driver will be filed within 2 years? 18 18 18Previous question Imagine another solar system, with a star of the same mass as the Sun. Suppose a planet with a mass twice that of Earth (2MEarth) orbits at a distance of 1 AU from the star. What is the orbital period of this planet? Hint: Think about how the mass of the Sun compares with the mass of the Earth. a. 3 months b. 6 monthsc. 1 year d. 2 yearse. It would not be able to orbit at this distance. Consider the second order differential equation with initial conditions u" +2u' - 5u = 5 sin(3t), u(1) = 3, u'(1) = 4.5. Without solving it, rewrite the differential equation as an equivalent set of first order equations. In your answer use the single letter u to represent the function u and the single letter v to represent the "velocity function" ul. Do not use u(t) or v(t) to represent these functions. Expressions like sin(t) that represent other functions are OK. u= V Now write the first order system using matrices: u C ] [: + The initial value of the vector valued solution for this system is: u(1) = v(1) Can anyone check my Latin 1 work?1. Puellea ab pueris spectantur. I translated to: The girls are watched by the boys. 2. Statua clara ab filiabus amabatur. I translated to: The famous statue was loved by daughters. 3. Villae magnae ab agricolis bonis aedificabuntur. I translated to: Large farmhouses will be built by good farmers. 4. Grain will be carried by the slaves into the farmhouse. I got: Frumentum ab servi portabitur in villa. 5. My country is occupied by the romans. I got: Patria ab romani occupo. Can anyone check/correct me?? An ordered pair of the function d(t) = 35t is _____.(35, 35)(35, 1)(1, 35)(1, 1)Which ordered pair is not a solution of f(x) = 2x + 9?(7, 23)(3, 14)(2, 13)(0, 9) I NEED HELP WITH THISE WORKSHEET:ENGLISH 9 A refrigeration system reaches operational balance when the number of vapor molecules that condense into liquid equals the number of vapor molecules that the compressor pumps into the condenser.a. Trueb. False Help me with this it's a crossword puzzle What must happen to amino acids before they can be used in catabolic reactions?A. They must be decarboxylatedB. They must be deoxygenatedC. They must be dehydrogenatedD. They must be deaminated The distance between the centers of Earth and the Moon is D. If the mass of the Earth is Me and the mass of the Moon is MM, which of the following is a correct expression for the magnitude of the acceleration of an object that is located halfway between the two bodies, a distance 1/2D from their centers? a.4G ( ME-MM)/D b.2G (ME-MM)/D^2 c.G (ME + MM)/D^2 d.2G (ME + MM)/D^2 e.4G (ME + MM)/D2 The permanent employment laws in many countries have resulted in differences between the Untied States and countries like France and Germany. Which of the following is an example of these differences?a. The possibility of firing someone quickly without cause is a simple matter in Germanyb. It is a simple matter to fire an employee in France after a relatively short probationary periodc. German workers get an average of four time more severance pay than U.S. workersd. In France, 45 hours is the legal weekly work limit for all employees