Answer:
This is somewhat of a confusing question.
Zero potential energy is usually used to refers to the zero potential energy of objects at infinity. Thus, bringing an object from infinity requires negative work because work is done by the object. One could also choose the pivot point of the pendulum as zero potential. Then any objects above the pivot point would be at a positive potential, and objects below the pivot point would have a negative potential (the object does work moving to a point of lower potential).
Basically, work done "on" an object requires positive potential energy input while work done "by" the object requires negative energy input.
Those are the basic considerations in solving potential energy problems.
The x vector component of a displacement vector has a magnitude of 146 m and points along the negative x axis. The y vector component has a magnitude of 113 m and points along the negative y axis. Find (a) the magnitude and (b) direction of . Specify the direction as a positive angle with respect to the negative x axis.
Answer:
a) the magnitude of r is 184.62
b) the direction is 37.74° south of the negative x-axis
Explanation:
Given the data in the question;
as illustrated in the image blow;
To find the the magnitude of r, we will use the Pythagoras theorem
r² = y² + x²
r = √( y² + x²)
we substitute
r = √((-113)² + (-146)²)
r = √(12769 + 21316 )
r = √(34085 )
r = 184.62
Therefore, the magnitude of r is 184.62
To find its direction, we need to find ∅
from SOH CAH TOA
tan = opposite / adjacent
tan∅ = -113 / -146
tan∅ = 0.77397
∅ = tan⁻¹( 0.77397 )
∅ = 37.74°
Therefore, the direction is 37.74° south of the negative x-axis
What is the weight of a girl with a mass of 50 kilograms in a space station with an artificial gravity of 7 N/kg
Answer:
14.5 N I'm pretty sure I think this is the answer
I need the named chemical compounds
Answer:
1 Acetaldehyde C2H4O
2 Acetamide C2H5NO
3 Acetic acid CH3COOH
4 Acetone C3H6O
Explanation: These are the only ones I know
The mass of a satellite in geostationary orbit is 1,847 kg. The mass of Earth is 5.97*1024 kg. Because of the force Earth exerts on the satellite, it accelerates. The magnitude of the acceleration is 0.223 m/s2, and it is directed towards Earth. What is the magnitude of the force in N the satellite exerts on Earth
Answer:
411.88 N
Explanation:
Given that:
mass of satellite m = 1847 kg
mass of the earth M = 5.97 × 10²⁴ kg
centripetal acceleration a = 0.223 m/s²
The magnitude of the force exerted by the earth on the satellite = the centripetal force that is being exerted by the satellite.
∴
[tex]m \dfrac{v^2}{r} = G \dfrac{mM}{r^2}[/tex]
[tex]ma = G \dfrac{mM}{r^2}[/tex]
[tex]G \dfrac{mM}{r^2}= 1847 \times 0.223[/tex]
[tex]G \dfrac{mM}{r^2}= 411.88 \ N[/tex]
For each of the motions described below, determine the algebraic sign (+, -, or 0) of the velocity and acceleration of the object at the time specified. For all of the motions, the positive y axis is upward.Part A. An elevator is moving downward when someone presses the emergency stop button. The elevator comes to rest a short time later. Give the signs for the velocity and the acceleration of the elevator after the button has been pressed but before the elevator has stopped.Part B. A child throws a baseball directly upward. What are the signs of the velocity and acceleration of the ball immediately after the ball leaves the child's hand?Part C. A child throws a baseball directly upward. What are the signs of the velocity and acceleration of the ball at the very top of the ball's motion (i.e., the point of maximum height)?
Answer:
A. Velocity is negative (-)
Acceleration is positive,(+)
B. Velocity is positive. (+)
Acceleration is negative (-)
C. Velocity is zero (0).
Acceleration is negative (-)
Explanation:
The elevator is said to be moving downward, therefore, its motion is in the negative direction as the positive direction is upward in the y-axis. Velocity is negative (-)
As the elevator is making an emergency stop, it is decelerating. Deceleration is negative acceleration. However, since it occurs in the opposite direction, i.e. acceleration vector is pointing upward, acceleration is positive,(+)
The motion of the ball is in the upward direction, therefore the velocity is positive. (+)
The acceleration due to the force of gravity acts in the opposite direction to that of the ball, i.e. downwards, acceleration is negative (-)
At maximum height, the ball will stop moving, therefore, velocity is zero (0).
Since acceleration due to the force of gravity acts downward, the acceleration is negative (-)
From the center of the Earth to the moon, what should the orbital radius of such satellite be in order to stay over the same point on the earth’s surface?
In order to have a period that matches the Earth's rotation, a satellite must be in a circular orbit, and 42,164 km from the center of the Earth.
But that's not quite enough to make sure that it always stays over the same point on the Earth's surface (and appears motionless in the sky). For that to happen, the satellite's orbit has to be directly over the Equator.
The Moon has nothing to do with any of this.
7. (a) At a distance of d/5 from a positive charge, by what factor is the electric potential changed: (1) 1/5, (2) 5, (3) 1/25 or (4) 25? Why? (b) How far from a +2.0 uC charge is a point with an electric potential value of 15KV? (c) How much of a change in potential would occur if the point were moved to three times the distance?
Answer:
it would change and the points would be off because of the change
Running along a rectangular track 50m × 40 m you complete one lap in 100 s. What is your average velocity for the lap ?
Answer:
1.8 m/s
Explanation:
Distance = 2*50 +2*40 [m] = 180 [m]
Time = 100 [s]
Velocity = Distance/Time = 1.8 m/s
Average velocity for the lap is 1.8 m/s
GIven:
Length of rectangular track = 50 m
Width of rectangular track = 40 m
Time taken to cover a lap = 100 seconds
Find:
Average velocity for the lap
Computation:
Perimeter of rectangle = Length of one lap
So,
Perimeter of rectangle = 2(l + b)
So,
Length of one lap = 2[50 + 40]
Length of one lap = 2[90]
Length of one lap = 180 meter
Average velocity = Distance / Time
Average velocity for the lap = 180 / 100
Average velocity for the lap = 1.8 m/s
Learn more:
https://brainly.com/question/17661499?referrer=searchResults
g You are walking around your neighborhood and you see a child on top of a roof of a building kick a soccer ball. The soccer ball is kicked at 37° from the edge of the building with an initial velocity of 21 m/s and lands 63 meters away from the wall. How tall, in meters, is the building that the child is standing on?
Answer:
h = 21.5 m
Explanation:
First of all, we define a pair of coordinate axes along the horizontal and vertical direction, calling x-axis to the horizontal and y-axis to the vertical, with the origin in the point where the ball is kicked.Neglecting air resistance, the only influence on the ball once kicked is due to gravity, so the ball is accelerated by the Earth with a constant value of -9.8 m/s2 (assuming the upward direction as positive).So, we can use the kinematic equation for displacement for the vertical direction, as follows:[tex]\Delta y = v_{oy}* t -\frac{1}{2}*g*t^{2} (1)[/tex]
Since the ball is kicked at an angle of 37º from the edge of the building, at an initial velocity of 21 m/s, we can find the horizontal and vertical initial speeds as follows:[tex]v_{ox} = v* cos 37 = 21 m/s * cos 37 = 16.8 m/s (2)[/tex]
[tex]v_{oy} = v* sin 37 = 21 m/s * sin 37 = 12.6 m/s (3)[/tex]
In the horizontal direction, since gravity has no component in this direction, the ball moves at a constant speed, equal to v₀ₓ.Applying the definition of average velocity, since we know the horizontal distance traveled, we can find the total time that the ball was in the air, as follows:[tex]t = \frac{\Delta x}{v_{ox} } = \frac{63m}{16.8m/s} = 3.75 s (4)[/tex]
Replacing (4) and (3) in (1), we can find the total vertical displacement, which is equal to the height of the building, as follows:[tex]-h = 12.6m/s* 3.75s -\frac{1}{2}*(9.8m/s2)*(3.75s)^{2} = -21.5 m (5)[/tex]
⇒ h = -(-21.5m) = 21.5 mA dock worker pushes a 50 kg crate up a 1-m-high, 3-m-long ramp.
Ignoring friction, how much work did he do?
Pls help !!!!!
Answer:
1470Joules
Explanation:
Workdone = Force * distance
Since the worker pushes the crate up the 3m ramp. The distance covered is 3m
Force = Mass * Acceleration due to gravity
Force = 50*9.8
Force = 490N
Workdone = 490 * 3
Workdone = 1470Joules
Hence I did 1470Joules of work
Billy is trying to shine a laser off a mirror at the end of a basketball court into Sam's eyes to distract him (Billy is evil). Sam is at a 38 degree reflection angle from the mirror. At what angle does Billy need to shine the laser at the mirror to get it in Sam's eyes.
Answer:
When we have a plane interface, the angle of incidence of the ray is the same as the angle of reflection.
In this case, we have a mirror (we assume that it is plane) and we know that we need to have an angle of reflection equal to 38° in order to reach Sam.
Then the angle of incidence of the ray must also be exactly 38°.
Then Billy needs to shine his laser at an angle of 38° at the mirror.
(where the angle is measured between the normal line to the surface of the mirror and the incident ray)
Billy needs to shine the laser at an incident angle of 38 degrees.
LASER is an acronym that stands for “light amplification by the stimulated emission of radiation.” We know that according to the laws of reflection, the angle of incidence is equal to the angle of reflection.
As such, knowing that Sam is at a 38 degree reflection angle from the mirror, Billy needs to shine the laser at an incident angle of 38 degrees.
Learn more: https://brainly.com/question/8592296?
Increasing the induced magnetic field strength ___ the energy gap between spin states and therefore ___ the frequency required for resonance. increases; increases increases; decreases decreases; increases decreases; decreases
Answer:
increases, increases
Explanation:
The energy difference between the two spin states increases with an increasing applied field.
Resonance is achieved when electromagnetic radiation is equal to the processional frequency.
The magnetic field strength applied causes a change in the energy required and frequency at which resonance occurs. As the magnetic field strength increases, it causes an increase in energy difference between the spin states which in turn increases the frequency.
Increasing the induced magnetic field strength Increase the energy gap between spin states and therefore increases the frequency required for resonance.
Some basic forms of energy include light, heat, sound, electricity, and energy of motion, Energy has the ability to cause motion or create change. Every
day, we encounter objects in our environment that are in motion. Think about examples of objects in motion and how you would describe them.
Choose all true statements about objects in motion
An object moving in one direction can never begin moving in another direction
One way to determine if an object is in motion is by comparing it to the objects around it.
Some forces, such as pushes and pulls, can cause objects to move.
An object in motion will always move in one direction and cannot change directions
An object that is not changing its position is not in motion
Forces can make objects in motion change directions, but cannot cause objects to move
Answer:
objects in motion will continue to move in motion unless acted upon by an unbalanced force.
What is moral duty?Please tell me the answer of this question.
Explanation:
Moral duties are the duties performed by the people on the basis of humanity and moral values. The following are some of the moral duties :
Respecting elders and loving juniorsHelped the needy , poor and helpless peopleHaving friendly behavior with othersRespecting everyone as human beingBeing obedient and respectful to parents , elderly people and teachers.Living ideal and respectful lifeHope I helped ! ♡
Have a wonderful day / night ! ツ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
is kicking a ball a balanced force
ps. dont search up
Answer:
No.
Explanation:
When the ball is kicked it has Gravity, Normal Force and applied force.
Given that the frequency of an EM wave is 4THz,what is the wavelength?
a) 75,000um
b) 75,000nm
c) 75,000pm
d) 75,000A
Answer:
B. 75,000nm
Explanation:
The wavelength of a wave can be calculated thus;
λ = v/f
Where;
λ = wavelength (m)
v = velocity of light = 3 × 10^8m/s
f = frequency (Hz)
According to this question, the EM wave has a frequency of 4THz i.e. 4 Terahertz = 4 × 10^12Hz
λ = 3 × 10^8 ÷ 4 × 10^12
λ = 3/4 × 10^(8-12)
λ = 0.75 × 10^-4
λ = 0.000075m
Based on the options given, this value is equivalent to 75,000nm, which means 75000 × 10^-9m.
albert rode his bike 20 miles north, then turned around and rode 10 miles south. what total distance did albert go? what total distance did albert go?
Answer: 10 miles south
Explanation:
The electric field force is a ___________ quantity.
Answer:
Explanation:
The force due to an electric field is a vector quantity because it has direction and magnitude just like Newton's Law
When we refer to gravity pulling down, what does this mean?
Answer:
gravity pills from the center of earth bringing you to the ground