If Jay pushes on a box with a force of 20 N to the right and Bradley pushes on a box with a force of 15 N to the left, what is the net force on the box?

Answers

Answer 1

Answer:

Net force = 5N

Explanation:

Jay = 20N to the right

Bradley = 15N to the left

To find the net force;

Since the forces are being applied to the box in opposite direction i.e acting in opposite direction, we would subtract them.

Net force = 20 - 15

Net force = 5N

Therefore, the net force on the box is 5 Newton.


Related Questions

Which of the following is the best description of the interior structure of a highly evolved high mass star late in its lifetime but before the collapse of its iron core?
a. Uranium, thorium, and plutonium collect in the core, eventually triggering a nuclear explosion
b. The elements within the star's interior are arranged in a uniform mixture of hydrogen and helium, with a coating of iron.
c. The interior consists almost entirely of carbon, with a small iron core
d. An onion-like set of layers, with the heaviest elements in the innermost shells surrounded by progressively lighter ones.
e. Multiple chemical elements are randomly mixed throughout the interior.

Answers

The best description of the interior structure of a highly evolved high mass star late in its lifetime but before the collapse of its iron core is  an onion-like set of layers, with the heaviest elements in the innermost shells surrounded by progressively lighter ones. option d.

This is because as a high mass star evolves, it undergoes nuclear fusion reactions that create heavier elements such as carbon, oxygen, and silicon. These elements then sink towards the core, creating a layered structure with the heaviest elements in the innermost shells. As the star approaches the end of its life, the iron core eventually becomes unstable and collapses, leading to a supernova explosion. The other options are not accurate descriptions of the interior structure of a highly evolved high mass star. Answer option d.

More on high mass star: https://brainly.com/question/30706375

#SPJ11

a thin beam of laser light of wavelength 805 passes through a single slit of width a=0.047mm. the resulting pattern is viewed on a distant screen. what is the angle of the 4 minimum (in deg)?

Answers

The angle of the 4th minimum in the diffraction pattern is approximately 3.93 degrees.

To find the angle of the 4th minimum in the diffraction pattern, we can use the formula for single-slit diffraction minima:

sinθ = mλ / a

where θ is the angle of the minimum, m is the order number of the minimum (4 in this case), λ is the wavelength of the laser light (805 nm), and a is the slit width (0.047 mm or 47,000 nm).

Plug in the values into the formula.
sinθ = (4 * 805 nm) / 47,000 nm

Simplify the expression.
sinθ = 3220 nm / 47,000 nm
sinθ ≈ 0.06851

Find the angle θ by taking the inverse sine (arcsin) of the result.
θ = arcsin(0.06851)
θ ≈ 3.93°

Therefore, the angle of the 4th minimum in the diffraction pattern is approximately 3.93 degrees.

Learn more about single-slit diffraction minima

brainly.com/question/31369458

#SPJ11

What capacitor in series with a 100 ohm resistor and a 22 mH inductor will give a resonance frequency of 1030 Hz ?

Answers

So, a capacitor of approximately 2.354 nF in series with a 100 ohm resistor and a 22 mH inductor will give a resonance frequency of 1030 Hz.

To find the capacitor needed to achieve a resonance frequency of 1030 Hz in a circuit with a 100 ohm resistor and a 22 mH inductor, we can use the formula for calculating resonance frequency in an LC circuit:

f = 1 / (2π √(LC))

where f is the resonance frequency in hertz, L is the inductance in henries, and C is the capacitance in farads.

We know the values of the resistor and inductor in the circuit, so we can rearrange the formula to solve for C:

C = 1 / (4π^2 f^2 L)

Plugging in the given values, we get:

C = 1 / (4π^2 x 1030^2 x 22 x 10^-3)

C ≈ 150 x 10^-9 farads

Therefore, a capacitor of approximately 150 nanofarads in series with the 100 ohm resistor and 22 mH inductor will give a resonance frequency of 1030 Hz.

I hope this helps! Let me know if you have any further questions.
To find the value of the capacitor that will create a resonance frequency of 1030 Hz in series with a 100 ohm resistor and a 22 mH inductor, you can use the formula for resonance frequency in an RLC circuit:

f = 1 / (2 * π * √(L * C))

where f is the resonance frequency, L is the inductance, and C is the capacitance. We are given f = 1030 Hz and L = 22 mH (0.022 H). We need to find C.

Rearranging the formula to solve for C:

C = 1 / (4 * π^2 * L * f^2)

Plugging in the given values:

C = 1 / (4 * π^2 * 0.022 * (1030^2))
C ≈ 2.354 × 10^-9 F

To know more about resonance frequency visit:-

https://brainly.com/question/13040523

#SPJ11

A bike and rider, 115-kg combined mass, are traveling at 7. 6 m/s. A force of 125 N is applied by the brakes. What braking distance is needed to stop the bike?

Answers

To determine the braking distance needed to stop a bike, we need to consider the combined mass of the bike and the rider, the applied force by the brakes, and the initial velocity of the bike.

To calculate the braking distance, we can use the equation:

distance =[tex](initial velocity^2) / (2 *[/tex] [tex]acceleration)[/tex]

The acceleration can be found using Newton's second law, which states that force equals mass times acceleration:

force = mass * acceleration

In this case, the force applied by the brakes is given as 125 N. The combined mass of the bike and the rider is 115 kg. Therefore, we can rearrange the equation to solve for acceleration:

acceleration = force/mass

Substituting the values, we have:

acceleration = 125 N / 115 kg

Next, we need to find the initial velocity squared. The initial velocity is given as 7.6 m/s. Hence:

[tex]initial velocity^2 = (7.6 m/s)^2[/tex]

Now we can calculate the braking distance using the formula mentioned earlier:

distance = [tex](7.6 m/s)^2 / (2 * (125 N / 115 kg))[/tex]

Simplifying the equation gives us the braking distance in meters.

Learn more about acceleration here:

https://brainly.com/question/2303856

#SPJ11

what is the magnification needed make a bacterium (1 micrometer) appear at a size of 0.1 mm?

Answers

To make a bacterium (1 micrometer) appear at a size of 0.1 mm, a magnification of 1000x is needed.

This is because 1 millimeter (mm) is equal to 1000 micrometers (μm). Therefore, if a bacterium is 1 μm in size, it would need to be magnified by 1000x to reach a size of 0.1 mm (100 μm). Magnification can be achieved through the use of specialized microscopes such as the electron microscope or the compound light microscope with high-powered lenses.
To determine the magnification needed to make a bacterium (1 micrometer) appear at a size of 0.1 mm, follow these steps:

1. Convert the desired size (0.1 mm) to micrometers: 0.1 mm = 100 micrometers (1 mm = 1000 micrometers)
2. Divide the desired size (100 micrometers) by the actual size of the bacterium (1 micrometer): 100 micrometers / 1 micrometer = 100

The magnification needed to make a bacterium (1 micrometer) appear at a size of 0.1 mm is 100 times.

To know more about electron microscopes, visit:

https://brainly.com/question/507443

#SPJ11

describe the equipotential surfaces for (a) an infinite line of charge and (b) a uniformly charged sphere.

Answers

The equipotential surfaces for an infinite line of charge are cylinders with the line of charge as the axis.The equipotential surfaces for a uniformly charged sphere are concentric spheres centered on the sphere.


(a) Infinite Line of Charge:
Equipotential surfaces are surfaces where the electric potential is constant. For an infinite line of charge, the electric potential depends only on the distance (r) from the line. The equipotential surfaces in this case are cylindrical surfaces centered around the line of charge. These cylinders have the same axis as the line of charge, and their radius corresponds to the constant potential value.

(b) Uniformly Charged Sphere:
For a uniformly charged sphere, the electric potential depends on the distance from the center of the sphere. Inside the sphere, the electric potential increases linearly with the distance from the center, while outside the sphere, it decreases proportionally to the inverse of the distance from the center. Equipotential surfaces in this case are spherical shells centered at the center of the charged sphere. The radius of these shells corresponds to the constant potential value.

In both cases, the equipotential surfaces are perpendicular to the electric field lines at every point, and no work is required to move a charge along an equipotential surface.

For morequestions on equipotential surfaces:

https://brainly.com/question/28044747

#SPJ11


(a) For an infinite line of charge, the equipotential surfaces are a series of concentric cylinders surrounding the line. The potential at each surface is constant and decreases as the distance from the line increases. These surfaces are perpendicular to the electric field lines.

(b) For a uniformly charged sphere, the equipotential surfaces are also concentric but in the form of spheres. Outside the charged sphere, the equipotential surfaces have constant potential and decrease in potential as you move away from the center. Inside the charged sphere, the potential is constant throughout. The electric field lines are radial and perpendicular to these equipotential surfaces.

To learn more about equipotential surfaces : brainly.com/question/14908372

#SPJ11

what is the sum of the exterior angle measures, one at each vertex, of a triangle?

Answers

The sum of exterior angle measures of a triangle is always 360 degrees. Each exterior angle is the supplement of the adjacent interior angle,

so their measures sum to 180 degrees. Since a triangle has three vertices, the sum of the exterior angle measures at each vertex is 3 times 180, or 540 degrees. However, the sum of the exterior angle measures is 360 degrees, not 540, because each exterior angle measure is counted three times, once at each vertex. This relationship between interior and exterior angles is important in geometry and can be used to solve various problems involving polygons and angles.

Learn more about  exterior angle  here;

https://brainly.com/question/28033970

#SPJ11

which best describes elements that are shiny, malleable, ductile, and good conductors of heat and electricity?

Answers

Answer:

Explanation:

They are called metals. Metals that are shiny, malleable, ductile and solid are great conductors of electricity EXCEPT mercury because mercury is the only metal that is a liquid at room temperature. Metals that can be hammered or rolled into sheets are ductile and the metal that are drawn into wires are malleable.

An LRC series circuit has R = 15.0 ?, L = 25.0 mH, and C = 30.0 ?F. The circuit is connected to a120-V (rms) ac source with frequency 200 Hz.(a) What is the impedance of the circuit?(b) What is the rms current in the circuit?(c) What is the rms voltage across the resistor?(d) What is the rms voltage across the inductor?(e) What is the rms voltage across the capacitor?

Answers

The impedance of the LRC circuit is approximately 15.81 Ω. The rms current is around 7.59 A. The rms voltage across the resistor is about 113.85 V, the inductor is around 238.49 V, and the capacitor is approximately 201.26 V.

(a) The impedance (Z) of an LRC series circuit can be calculated using the formula Z = √[tex](R^2[/tex] + (XL - [tex]XC)^2[/tex]), where R is the resistance, XL is the inductive reactance, and XC is the capacitive reactance.

For this circuit, R = 15.0 Ω, L = 25.0 mH (or 0.025 H), C = 30.0 μF (or 0.000030 F), and the frequency is 200 Hz.

First, we calculate the inductive reactance: XL = 2πfL = 2π(200)(0.025) = 31.416 Ω.

Next, we calculate the capacitive reactance: XC = 1/(2πfC) = 1/(2π(200)(0.000030)) = 26.525 Ω.

Now, we can substitute the values into the impedance formula:

Z = √(15.0^2 + (31.416 - 26.[tex]525)^2[/tex]) = √(225 + 24.891) = √249.891 ≈ 15.81 Ω.

Therefore, the impedance of the circuit is approximately 15.81 Ω.

(b) The rms current (I) in the circuit can be calculated using Ohm's Law: I = V/Z, where V is the rms voltage and Z is the impedance.

Given that the rms voltage (V) is 120 V, we substitute the values into the formula:

I = 120/15.81 ≈ 7.59 A.

Therefore, the rms current in the circuit is approximately 7.59 A.

(c) The rms voltage across the resistor (VR) is equal to the product of the rms current and resistance: VR = IR.

Substituting the values, VR = (7.59)(15.0) = 113.85 V.

Therefore, the rms voltage across the resistor is approximately 113.85 V.

(d) The rms voltage across the inductor (VL) can be calculated using the formula VL = IXL, where I is the rms current and XL is the inductive reactance.

Substituting the values, VL = (7.59)(31.416) ≈ 238.49 V.

Therefore, the rms voltage across the inductor is approximately 238.49 V.

(e) The rms voltage across the capacitor (VC) can be calculated using the formula VC = IXC, where I is the rms current and XC is the capacitive reactance.

Substituting the values, VC = (7.59)(26.525) ≈ 201.26 V.

Therefore, the rms voltage across the capacitor is approximately 201.26 V.

For more such questions on circuit, click on:

https://brainly.com/question/2969220

#SPJ11

Impedance (Z) 234.44 Ω

rms current in the circuit 0.512 A

rms voltage across the resistor 7.68 V

rms voltage across the inductor 16.09 V

RMS Voltage across the Capacitor 426.47 V

How to solve for impedance

(a) Impedance (Z)

Z = √[(R^2) + ((ωL - 1/(ωC))^2)]

= √[(15^2) + ((2π2000.025 - 1/(2π20030E-6))^2)]

= √[(225) + ((31.42 - 265.26)^2)]

= √[(225) + (-233.84^2)]

= √[225 + 54737]

= √54962

= 234.44 Ω

(b) RMS Current (I)

I = V/Z

= 120 / 234.44

= 0.512 A

(c) RMS Voltage across the Resistor (V_R)

V_R = I * R

= 0.512 * 15

= 7.68 V

(d) RMS Voltage across the Inductor (V_L)

V_L = I * ωL

= 0.512 * 2π * 200 * 0.025

= 16.09 V

(e) RMS Voltage across the Capacitor (V_C)

V_C = I / ωC

= 0.512 / (2π * 200 * 30E-6)

= 426.47 V

Read more on Impedance  here:https://brainly.com/question/13134405

#SPJ4

A standing wave is formed on a string that is 37 m long, has a mass per unit length 0.00874 kg/m, and is stretched to a tension of 15 N.1) Find the fundamental frequency. Answer in units of cycles/s.2) Find the next frequency that could cause a standing wave pattern.Answer in units of cycles/s.

Answers

The fundamental frequency is approximately 0.36 cycles/s and the next frequency is approximately 0.72 cycles/s.

To find the fundamental frequency of the standing wave on the string, we can use the equation:
f = (1/2L) √(T/μ)
Where L is the length of the string, T is the tension, μ is the mass per unit length, and f is the frequency. Plugging in the given values, we get:
f = (1/2*37) √(15/0.00874) = 42.9 cycles/s
So the fundamental frequency is 42.9 cycles/s.
To find the next frequency that could cause a standing wave pattern, we can use the formula:
f2 = 2f1
Where f1 is the fundamental frequency and f2 is the next frequency. Plugging in the value of f1, we get:
f2 = 2*42.9 = 85.8 cycles/s
So the next frequency that could cause a standing wave pattern is 85.8 cycles/s.
In summary, the fundamental frequency of the standing wave on the string is 42.9 cycles/s and the next frequency that could cause a standing wave pattern is 85.8 cycles/s.

To know more about wave pattern visit:

https://brainly.com/question/13894219

#SPJ11

The radius of a sphere is increasing at a rate of 4 mm/s. How fast is the volume increasing when the diameter is 40 mm? Enhanced Feedback Please try again. Keep in mind that the volume of a sphere with radius r is V=-π r3. Differentiate this equation with respect to time t using the Chain Rule to find the equation for the rate at which the volume is increasing, Then, use dV dt the values from the exercise to evaluate the rate of change of the volume of the sphere, paying close attention to the signs of the rates of change (positive when increasing, and negative when decreasing). Have in mind that the diameter is twice the radius

Answers

The volume of the sphere is increasing at a rate of 64π mm^3/s when the diameter is 40 mm.

Let's start by finding an expression for the rate of change of volume with respect to time using the formula for the volume of a sphere:

V = (4/3)πr^3

Taking the derivative with respect to time t, we get:

dV/dt = 4πr^2 (dr/dt)

where dr/dt is the rate of change of the radius with respect to time.

Since the diameter is 40 mm, the radius is half of that, or 20 mm. The rate of change of the radius is given as 4 mm/s.

Plugging in these values, we get:

dV/dt = 4π(20 mm)^2 (4 mm/s) = 64π mm^3/s

For more question on volume click on

https://brainly.com/question/14197390

#SPJ11

The volume of the sphere is increasing at a rate of 6400π [tex]mm^3/s[/tex] when the diameter is 40 mm.

The volume of a sphere with radius r is given by V = [tex](4/3)πr^3[/tex]. Differentiating this equation with respect to time t using the Chain Rule, we get:

dV/dt = 4π[tex]r^2[/tex] (dr/dt)

where dr/dt is the rate at which the radius is increasing with time.

Since the diameter is twice the radius, when the diameter is 40 mm, the radius is 20 mm. Also, we are given that dr/dt = 4 mm/s.

Substituting these values into the above equation, we get:

dV/dt = 4π[tex](20)^2[/tex](4) = 6400π [tex]mm^3/s[/tex]

Therefore, the volume of the sphere is increasing at a rate of 6400π [tex]mm^3/s[/tex] when the diameter is 40 mm.

Learn more about Chain Rule here:

https://brainly.com/question/28972262?

#SPJ11

A planet of radius R has nonuniform density given by the equation: p (r) = Por, where r is the distance from the center of the planet. Which of the following is a correct expression for the acceleration due to gravity g at the surface of the planet? (A) GAPOR(B) GпроR (C) GAPOR(D) Gapor (E) GTPR®

Answers

The correct answer is (B) GπPoR

To find the acceleration due to gravity g at the surface of the planet, we need to use the formula:

g = GM/R^2

where M is the mass of the planet, G is the gravitational constant, and R is the radius of the planet.

To find the mass of the planet, we can use the formula for the volume of a sphere:

V = (4/3)πR^3

and the given density function:

p(r) = Por

We can integrate p(r) over the volume of the planet to find its total mass:

M = ∫p(r) dV = ∫0^R 4πr^2 Por dr = 4πPo ∫0^R r^3 dr = πPoR^4

Now we can substitute this expression for M into the formula for g:

[tex]g = GM/R^2 = (GπPoR^4) / R^2 = GπPoR^2[/tex]

Therefore, the correct expression for the acceleration due to gravity g at the surface of the planet is (B) GπPoR.

To know more about acceleration due to gravity refer here

https://brainly.com/question/13860566#

#SPJ11

(T/F) the decay product that results from radioactive decay is always a stable daughter isotope.

Answers

The statement given "the decay product that results from radioactive decay is always a stable daughter isotope." is False.

The decay product resulting from radioactive decay can either be a stable daughter isotope or an unstable daughter isotope that undergoes further decay.Radioactive decay involves the spontaneous emission of particles or radiation from the nucleus of an atom in order to achieve greater stability. The type of decay that occurs and the resulting daughter product depends on the original nuclide. Some radioactive isotopes decay by emitting an alpha particle, which consists of two protons and two neutrons and reduces the atomic number by two, producing a new daughter nucleus. Others decay by emitting a beta particle, which is an electron or positron, resulting in a change in the atomic number. Some decays result in stable isotopes, while others result in unstable isotopes that may undergo further decay. In some cases, the daughter product may also be radioactive and undergo further decay until a stable isotope is reached.

For more such questions on decay

https://brainly.com/question/4250335

#SPJ11

False. The decay product that results from radioactive decay can be either a stable or an unstable daughter isotope, depending on the type of decay involved.

There are three main types of radioactive decay: alpha decay, beta decay, and gamma decay. In alpha decay, the nucleus emits an alpha particle, which consists of two protons and two neutrons. The resulting daughter nucleus will have an atomic number that is lower by two and a mass number that is lower by four. The daughter nucleus may or may not be stable, depending on its specific properties.

In beta decay, the nucleus emits a beta particle, which can be either an electron or a positron. This changes the number of protons in the nucleus, which in turn changes the element that the nucleus represents. The resulting daughter nucleus may also be stable or unstable.

In gamma decay, the nucleus emits a gamma ray, which is a high-energy photon. This does not change the number of protons or neutrons in the nucleus, but it can change the energy state of the nucleus. Again, the resulting daughter nucleus may or may not be stable.

Overall, the stability of the daughter nucleus after radioactive decay depends on the specific properties of the parent nucleus and the type of decay involved.

Learn more about radioactive decay, here:

brainly.com/question/9932896

#SPJ11

a ski tow operates on a slope of angle 15.9 ∘ of length 290 m. the rope moves at a speed of 11.6 km/h and provides power for 51 riders at one time, with an average mass per rider of 73.0 kg. Estimate the power required to operate the tow.

Answers

If ski tow operates on a slope of angle 15.9 ∘ of length 290 m. the rope moves at a speed of 11.6 km/h and provides power for 51 riders at one time, with an average mass per rider of 73.0 kg then The power required to operate the ski tow is approximately 115,766 W.

To estimate the power required to operate the ski tow, we need to use the formula:
Power = force x speed
First, we need to calculate the force required to pull the 51 riders up the slope. We can do this by using the equation:
Force = mass x acceleration
The acceleration of the riders is equal to the gravitational acceleration, which is 9.81 m/s^2. Therefore, the force required to pull all the riders is:
Force = 51 x 73.0 kg x 9.81 m/s^2
Force = 35,943.03 N
Next, we need to convert the speed of the rope from km/h to m/s:
Speed = 11.6 km/h x 1000 m/km / 3600 s/h
Speed = 3.22 m/s
Now, we can calculate the power required to operate the tow:
Power = force x speed
Power = 35,943.03 N x 3.22 m/s
Power = 115,766.02 W
Therefore, the power required to operate the ski tow is approximately 115,766 W.

To know more about power visit :

https://brainly.com/question/12945600

#SPJ11

HELP FAST
The reactants of a chemical equation have 1 S atom and 4 0 atoms. Which
set of atoms must also be found in the equation's products so that the
equation models the law of conservation of mass?
A. 4 S and 10
B. 1 S and 10
C. 4 S and 40
D. 1 S and 40

Answers

The set of atoms that must also be found in the equation's products so that the equation models the law of conservation of mass is 1 S atom and 40 atoms.

option D.

What is the law of conservation of mass?

The law of conservation of mass states that during a chemical reaction, the mass can neither be created nor destroyed but is transformed from one form to another.

The relative number of moles of reactants and products is the most important information that a balanced chemical equation provides because it helps us to conserve the mass of the both reactants and the products formed during the chemical reaction.

From the given question, the set of atoms that must also be found in the equation's products so that the equation models the law of conservation of mass is 1 S atom and 40 atoms.

Learn more about relative number of moles here: https://brainly.com/question/26952323

#SPJ1

For the shortest and longest lengths of wire tested in this experiment calculate the average power dissipated due to the resistance of the wire.

Answers

Average power dissipation cannot be determined without specific values for the resistance, current, and lengths of wire tested.

What is the average power dissipated due to resistance for the shortest and longest lengths of wire tested in this experiment?

To calculate the average power dissipated due to the resistance of the wire, we need to know the resistance value of the wire and the current flowing through it.

However, you haven't provided any specific values for these parameters or any details about the experiment. Consequently, I cannot give you a specific numerical answer without additional information.

Nonetheless, I can explain the general method for calculating the average power dissipation due to resistance. The power dissipated by a resistor can be determined using Ohm's Law and the formula for power:

P = I^2 * R

Where:

P is the power (in watts)

I is the current (in amperes)

R is the resistance (in ohms)

To calculate the average power dissipation, you would need to have measurements of the current flowing through the wire for different lengths and the corresponding resistance values. By substituting the values of current and resistance into the formula, you can calculate the power dissipated for each length of wire tested.

To find the shortest and longest lengths of wire tested, you would need to refer to the data from your experiment or provide that information if available. Once you have the values of current and resistance for the shortest and longest lengths, you can calculate the average power dissipated using the formula mentioned above.

Remember that power dissipation depends on the resistance and the square of the current. So, as the length of the wire changes, the resistance may vary accordingly, leading to different power dissipation levels.

Learn more about    resistance, current,

brainly.com/question/15126283

#SPJ11

A coil of wire contains 100 loops. The coil is rotated such that the flux changes from 20 x 10-4Wb to 26 x 10-4Wb in 1.5 x 10-2s. What is the average induced emf? (a) 1.8V (b) 1.1V (c) 4.0V (d) none of the above

Answers

A coil of wire with 100 loops is rotated, causing a flux change from 20 x 10-4Wb to 26 x 10-4Wb in 1.5 x 10-2s. The average induced emf is 2.67 V. So, the answer is (D) none of the above.

The average induced emf can be calculated using the formula:

[tex]\text{emf} = \frac{\Delta\Phi}{\Delta t} \times N[/tex]

where ΔΦ is the change in magnetic flux, Δt is the time taken for the change, and N is the number of loops in the coil.

Substituting the given values, we get:

[tex]\text{emf} = \frac{{(26 \times 10^{-4} \, \text{Wb}) - (20 \times 10^{-4} \, \text{Wb})}}{{1.5 \times 10^{-2} \, \text{s}}} \times 100[/tex]

Solving the equation, we get:

emf = 2.67 V

Therefore, none of the given options (a), (b), or (c) is correct. The average induced emf is 2.67 V.

To know more about the induced emf refer here :

https://brainly.com/question/16764848#

#SPJ11

A car of mass 1500. kg travels around a circular track of radius 30.0 meters in 15.0 seconds. what coefficient of friction is required for the car to make this turn? is it reasonable?

Answers

A coefficient of friction of 0.535 is required for the car to make this turn. The force required to keep the car moving in a circle is 7875.4 N.  



where F is the force required to keep the car moving in a circle, m is the mass of the car, v is the velocity of the car, and r is the radius of the circular track.
First, we need to find the velocity of the car. We can use the formula:
v = 2πr / t
where t is the time it takes for the car to complete one full circle around the track. In this case, t = 15.0 seconds, so:
v = 2π(30.0) / 15.0
v = 12.57 m/s
Now we can plug in the values we know into the centripetal force equation:
F = (mv^2) / r
F = (1500 kg)(12.57 m/s)^2 / 30.0 m
F = 7875.4 N


where Ffriction is the force of friction, μ is the coefficient of friction, and Fnormal is the normal force (the force exerted on the car by the track perpendicular to its motion).
In this case, the normal force is equal to the weight of the car:
Fnormal = mg
Fnormal = (1500 kg)(9.81 m/s^2)
Fnormal = 14715 N
Plugging in the values we know:
Ffriction = μFnormal
7875.4 N = μ(14715 N)
μ = 0.535

To know more about friction visit:-

https://brainly.com/question/13000653

#SPJ11

a refracting telescope is used to view the moon. the focal lengths of the objective and eyepiece are 2.24 m and 17.2 cm, respectively. What should be the distance between the lenses? ... m

Answers

The distance between the lenses should be approximately 2.2523 meters.

To find the distance between the lenses of a refracting telescope, you can use the lens maker's equation:

1/f = 1/f_o + 1/f_e,

where f is the combined focal length of the system, f_o is the focal length of the objective lens (2.24 m), and f_e is the focal length of the eyepiece lens (0.172 m, since you need to convert 17.2 cm to meters).

First, find the combined focal length (f) using the equation:

1/f = 1/2.24 + 1/0.172
1/f = 0.44642857 + 5.81395349
1/f = 6.26038206
f ≈ 0.1597 m

Now, to find the distance between the lenses, you can use the following equation:

distance = f_o + f_e - f
distance = 2.24 + 0.172 - 0.1597
distance ≈ 2.2523 m

So, the distance between the lenses should be approximately 2.2523 meters.

Learn more about lens maker's equation here: https://brainly.com/question/30898654

#SPJ11

Two charged particles, Qi 12.0 mC, Q--5.0mC are placed on a line. At what finite locations along the line may the electric potential be equal to zero? I. in betw een the particies, closer to the positive particle II. in between the particles, closer to the negative particle III. not in between, but closer to the positive particle IV. not in between, but closer to the negative particle V. It can never be zero. s o 12 A. I only B. II only C. V only D. I and IV E. II and IV

Answers

The electric potential can be equal to zero at locations between the particles, closer to the positive or negative particle.

To find the location where the electric potential is zero, we need to use the equation for the electric potential: V=kQ/r, where k is Coulomb's constant, Q is the charge of the particle, and r is the distance from the particle. If we set V equal to zero, we can solve for r and find the locations where the potential is zero.

We can see that the potential is inversely proportional to the distance, so if we move closer to the positive particle, the potential will increase, and if we move closer to the negative particle, the potential will decrease. Therefore, the potential can be zero in between the particles, closer to either particle.

It cannot be zero outside of these locations because the potential will always have some non-zero value at any other location. Therefore, the correct answer is D, I and IV.

Learn more about Coulomb's constant here:

https://brainly.com/question/9658349

#SPJ11

Suppose { V1; **, V4} is a linearly dependent spanning set for a vector space V. show that each vector WE V can be expressed in more than one way as a linear combination of V1 -, V4. Hint Let w = kıvı + K3V2 + K3V2 + ka Val be an arbitrary vector in V

Answers

That any vector in V can be expressed as a linear combination of V₁, V₂, and V₃ in more than one way, we have proven that {V₁, V₂, V₃} is not a basis for V.

Since {V₁, V₂, V₃, V₄} is a linearly dependent spanning set for V, we can write one of the vectors in terms of the others. Let's assume that V₄ can be written as a linear combination of the other three vectors, i.e.,

V₄ = a₁V₁ + a₂V₂ + a₃V₃

where at least one of the coefficients a₁, a₂, a₃ is nonzero (otherwise the set would be linearly independent). Then, we can rewrite any vector w in V as:

w = k₁V₂+ k₂V₂ + k₃V₃ + k₄V₄

= k₁V₁+ k₂V₂ + k₃V₃ + k4(a₁V₁ + a₂V₂ + a₃V₃)

= (k₁+ k₄a₁)V1₁+ (k₂ + k4a₂)V₂ + (k₃ + k4a₃)V₃

This shows that w can be expressed as a linear combination of V, V₂, and V₃ in more than one way. To see why, consider setting k₁, k₂, and k₃ to zero. Then, we have:

w = k₄(a₁V₁ + a₂V₂ + a₃V₃)

If we choose k₄ to be nonzero, we have expressed w as a linear combination of V₁, V₂, and V₃ with coefficients k4a₁, k4a₂, and k4a₃, respectively. However, if we choose k₄ to be zero, we have expressed w as a linear combination of V₁, V₂, and V3 with coefficients 0, 0, and 0, respectively. This gives us a different representation of w as a linear combination of V₁, V₂, and V₃.

To know more about vector

https://brainly.com/question/30079865

#SPJ4

compute the flux integral where f is the vector field f = x^3 i y^3 j z^3 k

Answers

The flux integral of the vector field F = x³ i + y³ j + z³ k through a closed surface S that encloses a cube of side length a centered at the origin is 4πa³.

The flux integral of a vector field F through a closed surface S is given by:

Φ = ∫∫_S F · dA

where dA is the infinitesimal area element of the surface S, and the dot product · represents the scalar product.

To compute the flux integral of the vector field F = x³ i + y³ j + z³ k through a closed surface S, we can use the Divergence Theorem, which states that the flux integral of a vector field through a closed surface is equal to the volume integral of the divergence of the vector field over the enclosed volume:

Φ = ∫∫_S F · dA = ∫∫∫_V ∇ · F dV

where ∇ · F is the divergence of the vector field F, and dV is the infinitesimal volume element of the enclosed volume V.

The divergence of the vector field F can be computed as follows:

∇ · F = ∂(x³)/∂x + ∂(y³)/∂y + ∂(z³)/∂z

= 3x² + 3y² + 3z²

Substituting this into the Divergence Theorem, we get:

Φ = ∫∫_S F · dA = ∫∫∫_V (3x² + 3y² + 3z²) dV

The enclosed volume V can be any volume that is enclosed by the closed surface S. For simplicity, let us assume that the surface S encloses a cube of side length a centered at the origin. Then, we can express the volume integral as:

∫∫∫_V (3x² + 3y² + 3z²) dV = 3∫_0ᵃ ∫_0ᵃ ∫_0ᵃ (x² + y² + z²) dxdydz

Using spherical coordinates, we can express the integrand in terms of the radial distance r and the solid angle Ω as:

x²+ y² + z² = r² + r^2sin²θsin²φ + r²cos²θ

= r²(sin²θcos²φ + sin²θsin²φ + cos²θ)

= r²

where θ is the polar angle and φ is the azimuthal angle.

The volume integral then becomes:

∫_0ᵃ ∫_[tex]0^Pi[/tex] ∫_0^{2π} r² sinθ dφ dθ dr

= 4π/3 a³

Substituting this back into the expression for Φ, we get:

Φ = 3∫_0ᵃ ∫_0ᵃ ∫_0ᵃ (x² + y² + z²) dxdydz

= 3(4π/3 a³)

= 4πa^3

Therefore, the flux integral of the vector field F = x³ i + y³ j + z³ k through a closed surface S that encloses a cube of side length a centered at the origin is 4πa³.

To know more about  flux integral

https://brainly.com/question/31744329

#SPJ4

the xy-plane, how many points on the curve y2 x2=3−xy have horizontal or vertical tangent lines?

Answers

The curve has only two points with horizontal tangent lines, [tex](\sqrt3, 0)[/tex] and [tex](-\sqrt3, 0)[/tex].

To find the points on the curve where the tangent lines are either horizontal or vertical, we need to find the points where the slope of the tangent line is zero or undefined.

First, let's find the derivative of y with respect to x:

[tex]2y \dfrac{dy}{dx} x^2 + 2x y^2 = -y - x \dfrac{dy}{dx}[/tex]

Solving for [tex]\dfrac{dy}{dx}[/tex], we get:

[tex]\dfrac{dy}{dx} = \dfrac{(-2xy^2 - y)}{(2yx - x^2)}[/tex]

The slope is zero when the numerator is zero, which occurs when:

y(-2x y - 1) = 0

This gives us two cases: either y = 0 or -2x y - 1 = 0.

If y = 0, then [tex]x^2 = 3[/tex], so there are two points with a horizontal tangent line:  [tex](\sqrt3, 0)[/tex] and [tex](-\sqrt3, 0)[/tex].

If -2x y - 1 = 0, then [tex]y = \dfrac{(-1) }{(2x)}[/tex]. Substituting into the equation for the curve, we get:

[tex]\dfrac{-1}{4}(x^2) x^2 = 3 + \dfrac{1}{2}[/tex]

Simplifying, we get:

[tex]x^2 = \dfrac{-8}{3}[/tex]

This has no real solutions, so there are no points on the curve with a vertical tangent line.

To know more about tangent line, here

https://brainly.com/question/31617205

#SPJ4

Light travels at a velocity of c=3.0×108 m/s in a vacuum. Green light has a wavelength of λ=531 nm.
a) Input an expression for the frequency, v, of green light.

Answers

The expression for the frequency of green light is:

v = (3.0 × [tex]10^8[/tex]) / (531 × [tex]10^{-9[/tex]) Hz

The velocity of light (c) in a vacuum is related to the wavelength (λ) and frequency (v) of light by the equation:

c = λ * v

To find the expression for the frequency (v) of green light, we can rearrange the equation as follows:

v = c / λ

Substituting the given values:

v = (3.0 × [tex]10^8[/tex] m/s) / (531 nm)

Note that we need to convert the wavelength from nanometers (nm) to meters (m) for the units to match:

1 nm = 1 × [tex]10^{-9}[/tex] m

v = (3.0 ×[tex]10^8[/tex] m/s) / (531 × 10^-9 m)

Simplifying:

v = (3.0 ×[tex]10^8[/tex]) / (531 × [tex]10^{-9}[/tex]) Hz

Therefore, the expression for the frequency of green light is:

v = (3.0 × [tex]10^8[/tex]) / (531 × [tex]10^{-9[/tex]) Hz

To know more about frequency refer here

https://brainly.com/question/14316711#

#SPJ11

. A metal-silicon junction is biased so that the potential drop Ao, in the Si is 0.50 V. The doping is No = 4.0x1016 cm-?. Calculate the depletion-layer width Wn. AD EC EF Ev wn Wn = cm.

Answers

The depletion-layer width Wn in a metal-silicon junction with potential drop Ao of 0.50 V and doping No of 4.0x10^16 cm^-3 is approximately 1.30x10^-6 cm.

To calculate the depletion-layer width (Wn) in a metal-silicon junction, we use the formula:
Wn = √(2 * ε * Ao / q * No)
where ε is the permittivity of silicon, Ao is the potential drop, q is the charge of an electron, and No is the doping concentration.
For silicon, the permittivity (ε) is approximately 1.04x10^-12 F/cm, and the charge of an electron (q) is 1.6x10^-19 C.
Now, we can plug in the values and solve for Wn:
Wn = √(2 * 1.04x10^-12 F/cm * 0.50 V / (1.6x10^-19 C * 4.0x10^16 cm^-3))
Wn ≈ 1.30x10^-6 cm
Therefore, the depletion-layer width Wn is approximately 1.30x10^-6 cm.

Learn more about doping here:

https://brainly.com/question/27892005

#SPJ11

10.0 grams of argon and 20.0 grams of neon are placed in a 1200.0 ml container at 25.0 °c. the partial pressure of neon is __________ atm. 20.4 3.40 8.70 5.60 0.700

Answers

10.0 grams of argon and 20.0 grams of neon are placed in a 1200.0 ml container at 25.0 °C, the partial pressure of neon is 8.70 atm.

To calculate the partial pressure of neon in the container, we need to use the ideal gas law equation:

PV = nRT

where:

P is the pressure,

V is the volume,

n is the number of moles,

R is the ideal gas constant (0.0821 L·atm/(mol·K)), and

T is the temperature in Kelvin.

First, we need to convert the given temperature from Celsius to Kelvin:

T(K) = T(°C) + 273.15

T = 25.0 °C + 273.15 = 298.15 K

Next, we need to calculate the number of moles for each gas using their molar masses:

moles of argon = mass of argon / molar mass of argon

moles of neon = mass of neon / molar mass of neon

The molar masses are:

molar mass of argon = 39.95 g/mol

molar mass of neon = 20.18 g/mol

moles of argon = 10.0 g / 39.95 g/mol ≈ 0.2503 mol

moles of neon = 20.0 g / 20.18 g/mol ≈ 0.9909 mol

Now, let's calculate the partial pressure of neon:

P(neon) = (moles of neon * R * T) / V

=>P(neon) = (0.9909 mol * 0.0821 L·atm/(mol·K) * 298.15 K) / 1.200 L

=>P(neon) ≈ 8.70 atm

Therefore, the partial pressure of neon in the container is approximately 8.70 atm.

Learn more about pressure at: https://brainly.com/question/28012687

#SPJ11

An airtight box, having a lid of area 80cm2, is partially evacuated (i.e., has low pressure than outside atmosphere). Atmosphere pressure is 1.01×10 5
Pa. A force of 600N is required to pull the lid off the box. What was the pressure in the box?

Answers

The pressure in the box was 100 Pa.

The force required to pull the lid off the box is equal to the pressure difference between the inside and outside of the box multiplied by the area of the lid:

F = (P_outside - P_inside) * A_lid

where F is the force required to lift the lid, A_lid is the area of the lid, and P_outside and P_inside are the pressures outside and inside the box, respectively.

Solving for P_inside, we get:

P_inside = P_outside - F/A_lid

Substituting the given values, we get:

P_inside = 1.01×10^5 Pa - 600 N / (80 cm^2 * (1 m/100 cm)^2)

P_inside = 1.01×10^5 Pa - 750 Pa

P_inside = 100 Pa

Therefore, the pressure inside the box was 100 Pa.

To know more about pressure, click here:

https://brainly.com/question/30673967

#SPJ11

approximately what is the smallest detail observable with a microscope that uses green light of frequency 5.83×1014 hz ?

Answers

The smallest detail observable with a microscope using green light of frequency 5.83×10^14 Hz is approximately 516 nm.

How is the size of the smallest observable detail in a microscope determined?

The size of the smallest observable detail in a microscope is related to the wavelength of the light used. The relationship between wavelength and the resolving power of a microscope is described by the Rayleigh criterion.

According to this criterion, the smallest resolvable detail is approximately equal to the wavelength of the light divided by two times the numerical aperture of the microscope.

For green light with a frequency of 5.83×10^14 Hz, the corresponding wavelength is approximately 516 nm (nanometers). This means that the smallest detail that can be resolved by the microscope using this green light has a size of around 516 nm.

Learn more about: Microscope

brainly.com/question/1869322

#SPJ11

If you want to detect a civilization, which of the below are problems for SETI? Chose all that apply.
Select one or more:
a. What frequency to listen at?
b. What channel size do we use?
c. Where to listen?
d. What code do we use?
e. What polarization do we use?
f. Where to listen?

Answers

The problems for the Search for Extraterrestrial Intelligence (SETI) can include the following:

a. What frequency to listen at?

c. Where to listen?

f. Where to listen?

These three options directly address the challenges faced by SETI in detecting a civilization. Determining the appropriate frequency range to monitor is crucial because it affects the likelihood of detecting any potential signals. Similarly, selecting the right location to focus on in space plays a significant role, as it determines the probability of intercepting any potential transmissions. Both of these factors influence the overall success of SETI endeavors. The other options are not directly related to the challenges faced by SETI :d. What channel size do we use? - This question pertains to the technical aspects of signal processing and bandwidth allocation, which are secondary concerns after establishing the frequency and location. d. What code do we use? - While the choice of code (e.g., encoding schemes or protocols) can impact the efficiency and effectiveness of data transmission, it is not a primary problem for SETI in detecting civilizations. e. What polarization do we use? - Polarization considerations relate to the orientation of electromagnetic waves and the alignment of antennas. While polarization can have an impact on signal reception and interpretation, it is not one of the main problems faced by SETI in detecting civilizations.

learn more about here:

learn more about frequency here:

https://brainly.com/question/5102661

#SPJ11

if a spring requires 20 n to be compressed a distance of 10 centimeters, what is the spring constant in n/m?

Answers

The spring constant of the spring is 200 N/m.

What is the spring constant?

The spring constant (k) represents the stiffness or rigidity of a spring and is defined as the force required to stretch or compress the spring by a unit distance. It is given by the formula:

k = F / x

where k is the spring constant, F is the applied force, and x is the displacement.

In this case, the spring requires a force of 20 N to be compressed a distance of 10 centimeters (0.1 meters). Plugging these values into the formula:

k = 20 N / 0.1 m

= 200 N/m

Therefore, the spring constant of the spring is 200 N/m. This means that for every meter of compression or extension, the spring exerts a force of 200 Newtons.

To know more about spring constant, refer here:

https://brainly.com/question/29975736#

#SPJ4

Other Questions
Differentiate foreign investment from the types of aid provided by the UNDP and world bank, citing specific examples of aid from both. g-h + 8, when g = 3, h = 5 Depending on environmental conditions, specific genes can be either a. active or inactive b. identical or fraternal c. structured or unstructured d. monozygotic or dizygotic what is a cummon noun the toll on a highway us based on the miles driven. If the toll in a 15-mile stretch on a highway is $0.60. find the cost to drive a 80-mile stretch Calculate the backwash velocity necessary to expand a sand filter with an effective size of 0.6 mm and a uniformity coefficient of 1.3. This medium (or any other, for that matter) can be cleaned at a backwash velocity of 0.3 m/min if the fluidization is provided by air scour. Calculate the volume of water saved during a 10 min backwash of a 2 by 4 m filter if air scours is used. If the cost of water production is 25 BDT/m3, how much money would be saved per year by air fluidization if the filter runs on average 2 days in length? A graph titled Position versus Time shows time in seconds on the x axis, numbered 0 to 5, and position in meters on the y axis, numbered 0 to 15. The graph is a straight line from the (0, 3) to (4, 15).Based on the information presented in the graph, what is the velocity of the object? m/s Does 8cm 15cm and 17cm form a right triangle? Which chinese cultural values are revealed by the passage? obedience self-control love of family good reputation Why is soft skills communication important? If f(x)=x is the parent graph, then which equation represents the shown transformation? HI i would like some help asap HELP! :,) pleaseeeee be sure to convery the differences between the two products when interacting with customers HELP!!!!! Please!!! Choose 2 realist writers and use direct text evidence from module readings to describe 1 social issue for each writer that they hoped to bring to the attention of ordinary Americans. What are two social issues you would like to bring to the attention of Americans and how would you do it? A 10 1/2 -inch candle burns down in 6 hours. At what rate does the candle burn, in inches per hour? Jet streams are associated with fronts because of the: A single raindrop illuminated by sunshine disperses: Gabriel earns $11.25 per hour at his job. He also receives a bonus of $20 each week if he arrives on time for each of his shifts. Assuming Gabriel is always on time, and x is the number of hours he works, which rule for f(x) models his weekly paycheck? How do i make a study guide for graphing and functions HELP