The pK, for chlorous acid is 2.0. For a 1.00 L solution containing 0.10 M HClO2 and 0.15 M NaCIO. a. Determine the pH of this solution. Explain whether your answer makes sense and why? b. If 0.050 moles of HCl(aq) were added to the mixture in the previous problem, write the reaction that occurs and find the new pH.

Answers

Answer 1

The new pH is 1.09 .

The dissociation of chlorous acid is:

HClO2 + H2O ⇌ H3O+ + ClO2-

The Ka expression for chlorous acid is:

Ka = [H3O+][ClO2-]/[HClO2]

The pKa for chlorous acid is 2.0, so:

pKa = -log(Ka)

2.0 = -log(Ka)

Ka = 10⁻²

a. Using the given concentrations, we can calculate the initial concentration of HClO2 and ClO2-:

[HClO2] = 0.10 M

[ClO2-] = 0.15 M

The initial concentration of H3O+ is zero, so we can assume that x is the concentration of H3O+ that forms:

[H3O+] = x

The concentration of ClO2- that forms is also x, so:

[ClO2-] = x

The concentration of HClO2 that dissociates is (0.10 - x), so:

[HClO2] = 0.10 - x

Using the Ka expression and the given pKa value, we can set up the following equation:

Ka = [H3O+][ClO2-]/[HClO2]

10⁻² = x² / (0.10 - x)

Solving for x gives:

x = 3.16 × 10⁻² M

Therefore, the pH of the solution is:

pH = -log[H3O+]

pH = -log(3.16 × 10⁻²)

pH = 1.50

This answer makes sense since the pH is less than 2.0, indicating that the solution is acidic and the majority of the chlorous acid is undissociated.

b. Adding 0.050 moles of HCl(aq) to the solution will increase the concentration of H3O+ by:

Δ[H3O+] = 0.050 mol / 1.00 L

Δ[H3O+] = 0.050 M

The reaction that occurs is:

HCl(aq) + H2O(l) → H3O+(aq) + Cl-(aq)

This will cause the concentration of HClO2 to decrease by 0.050 M and the concentration of ClO2- to decrease by 0.050 M. Therefore, the new concentrations are:

[HClO2] = 0.10 M - 0.050 M

             = 0.050 M

[ClO2-] = 0.15 M - 0.050 M

            = 0.100 M

Using the Ka expression and the new concentrations, we can calculate the new concentration of H3O+:

Ka = [H3O+][ClO2-]/[HClO2]

10⁻² = x² / (0.050)

x = 3.16 × 10⁻² M + 0.050 M

x = 8.16 × 10⁻² M

Therefore, the new pH is:

pH = -log[H3O+]

pH = -log(8.16 × 10⁻²)

pH = 1.09.

To know more about dissociation refer here

brainly.com/question/30961097#

#SPJ11


Related Questions

(2pts) Select the limiting reagent Choose isopentyl alconol acetic acid (3pts) Isopentyl acetate theoretical yield (grams) (Zpts) Isopertyl acetate obtained (grams) (Zpts) Isopentyl acetate percent yield (Zpts) Isopentyl acetate boiling poirit (lit) (Zpts) Isopentyl alcohol boiling point (lit) (1Opts) Post Lab Questions (Spts) Upload picture 0f your drawn separation scheme for isopentyl acetate from the reaction mixture

Answers

The key points and tasks mentioned in the paragraph include selecting the limiting reagent, calculating the theoretical and obtained yield of isopentyl acetate, determining the percent yield, noting the boiling points of isopentyl acetate and isopentyl alcohol.

What are the key points and tasks mentioned in the given paragraph related to the experiment with isopentyl acetate?

In the given paragraph, several points are mentioned related to the experiment involving isopentyl acetate.

The paragraph asks for the selection of the limiting reagent, calculation of the theoretical yield and obtained yield of isopentyl acetate, determination of the percent yield, boiling points of isopentyl acetate and isopentyl alcohol, and post-lab questions.

Additionally, it requests the upload of a picture showing the drawn separation scheme for isopentyl acetate from the reaction mixture.

These points are part of a lab experiment or assignment where students are expected to perform calculations, analyze results, and provide a separation scheme diagram.

Learn more about isopentyl acetate

brainly.com/question/29756493

#SPJ11

in an alcohol-in-glass thermometer, the alcohol column has length 12.68 cm at 0.0 ∘c and length 22.55 cm at 100.0 ∘c. What is the temperature if the column has length a. 15.10 cm, and b. 22.95 cm.

Answers

An alcohol-in-glass thermometer works by using the principle that volume of a liquid changes with an increase in temperature. By using formula provided, we can calculate temperature and temperature at which alcohol column has a length of 22.95 cm is 84.39°C. Correct answer is option B

An alcohol-in-glass thermometer works on the principle that the volume of a liquid increases with an increase in temperature. In this type of thermometer, a small amount of alcohol is filled into a glass tube and sealed at both ends. As the temperature changes, the volume of the alcohol column changes and hence its length in the tube changes.



To calculate the temperature at which the alcohol column has a length of 15.10 cm, we can use the formula:
T = (L - L0) / (L100 - L0) x 100, where T is the temperature, L is the length of the alcohol column, L0 is the length of the alcohol column at 0.0°C, and L100 is the length of the alcohol column at 100.0°C.



Substituting the given values, we get:
T = (15.10 - 12.68) / (22.55 - 12.68) x 100
T = 57.02°C



Therefore, the temperature at which the alcohol column has a length of 15.10 cm is 57.02°C.
To calculate the temperature at which the alcohol column has a length of 22.95 cm, we can use the same formula:
T = (L - L0) / (L100 - L0) x 100



Substituting the given values, we get:
T = (22.95 - 12.68) / (22.55 - 12.68) x 100
T = 84.39°C



Therefore, the temperature at which the alcohol column has a length of 22.95 cm is 84.39°C. An alcohol-in-glass thermometer works by using the principle that the volume of a liquid changes with an increase in temperature. By using the formula provided, we can calculate the temperature of the thermometer for a given length of the alcohol column. Correct answer is option B

Know more about thermometer here:

https://brainly.com/question/24189042

#SPJ11

Element 88 undergoes 16 gamma, 8 alpha, 4 negative beta and 10 positive beta decays. The resulting nucleus is O A. 74 OB. 82 OC. 62 OD. 106 O E. 66

Answers

The resulting nucleus is E. 66.

Element 88, with an atomic number of 88, undergoes a series of decays as follows:

1. 16 gamma decays: Gamma decay does not change the atomic number or mass number of an element, so the atomic number remains 88.

2. 8 Alpha decays: Alpha decay reduces the atomic number by 2 and the mass number by 4.

After 8 alpha decays, the atomic number becomes 88 - (8 * 2) = 72 and the mass number decreases by 32.

3. 4 negative beta decays: Negative beta decay increases the atomic number by 1, so after 4 negative beta decays, the atomic number becomes:

72 + 4 = 76.

4. 10 positive beta decays: Positive beta decay (also called beta plus decay or positron decay) decreases the atomic number by 1.

After 10 positive beta decays, the atomic number becomes:

76 - 10 = 66.

The resulting nucleus has an atomic number of 66. Therefore, the correct answer is option E.

know more about nucleus here:

https://brainly.com/question/141626

#SPJ11

4-nitrophenol is more acidic than phenol due to resonance stabilization of the conjugate base. Based on this reasoning, do you expect 3-nitrophenol to be more acidic than 4-nitrophenol, less acidic, or about the same? Explain your answer and draw all relevant resonance structures.
I'm not even sure what resonance stabilization is =/

Answers

Resonance stabilization refers to the distribution of electrons within a molecule or ion due to the presence of multiple resonance structures. In the case of 4-nitrophenol, the nitro group (-NO₂) can donate its electron density to the phenol ring, creating a resonance structure where the negative charge is spread over both the oxygen atom and the adjacent carbon atom. This makes the conjugate base of 4-nitrophenol more stable and therefore more acidic than the conjugate base of phenol.


Now, when it comes to 3-nitrophenol, the nitro group is attached to a different carbon atom on the phenol ring. This means that the resonance stabilization of the conjugate base will be different. Specifically, the negative charge will be spread over the oxygen atom and a different carbon atom compared to 4-nitrophenol. Therefore, we cannot assume that 3-nitrophenol will be more or less acidic than 4-nitrophenol based solely on the presence of the nitro group. Instead, we would need to compare the relative stability of the two conjugate bases by drawing their resonance structures.

To draw the resonance structures for 3-nitrophenol, we can first deprotonate it to form the conjugate base. This will result in a negatively charged oxygen atom attached to the phenol ring. We can then move the double bond between the oxygen and the carbon atom adjacent to the nitro group to form a resonance structure where the negative charge is spread over the oxygen and the adjacent carbon. Finally, we can move the double bond between the carbon atom adjacent to the nitro group and the nitrogen atom of the nitro group to form a second resonance structure where the negative charge is spread over the oxygen and the nitrogen. These resonance structures are shown below:


By comparing the stability of the two conjugate bases (one from 3-nitrophenol and one from 4-nitrophenol) based on their respective resonance structures, we can determine which is more acidic. However, without knowing the pKa values for these compounds, we cannot make a definitive prediction about their relative acidity.

To know more about resonance structures, visit:

https://brainly.com/question/29547999

#SPJ11

For the next three problems, consider 1.0 L of a solution which is 0.6 M HC2H3O2 and 0.2 M NaC2H3O2 (Ka for HC2H3O2 = 1.8 x 10-5). Assume 2 significant figures in all of the given concentrations so that you should calculate all of the following pH values to two decimal places. Calculate the pH of this solution.

Answers

The pH of the solution is 4.38. This is found by using the Ka expression to calculate the concentration of H+ ions, then using the definition of pH to find the p H.

The solution is a buffer solution, which means that it can resist changes in pH when small amounts of acid or base are added. This is because the weak acid and its conjugate base are present in roughly equal concentrations, allowing them to neutralize any added H+ or OH- ions. The pH of a buffer solution is determined by the relative concentrations of the weak acid and its conjugate base, as well as the dissociation constant of the weak acid.

Learn more about pH of the solution here;

https://brainly.com/question/15163821

#SPJ11

HELP HELP HELP


what’s the partial pressure of argon in a mixed gas containing 0.522 atm of He, 322 mm Hg of Ne, and argon if the total pressure is 187 kPa

Answers

Answer:

the partial pressure of argon in the mixture is 91.2 kPa.

Explanation:

To find the partial pressure of argon, we need to first calculate the total pressure contributed by the other gases in the mixture:

Total pressure = Partial pressure of He + Partial pressure of Ne + Partial pressure of Ar

We can convert the pressure of He and Ne into units of kPa to match the units of the total pressure:

Partial pressure of He = 0.522 atm x 101.325 kPa/atm = 52.9 kPa

Partial pressure of Ne = 322 mmHg x 1 kPa/7.5006 mmHg = 42.9 kPa

Substituting these values and the given total pressure into the equation above, we can solve for the partial pressure of Ar:

187 kPa = 52.9 kPa + 42.9 kPa + Partial pressure of Ar

Partial pressure of Ar = 187 kPa - 52.9 kPa - 42.9 kPa

Partial pressure of Ar = 91.2 kPa

Therefore, the partial pressure of argon in the mixture is 91.2 kPa.

Identity of the product. Is the phenyl ring positioned on the exo or endo side of the bicyclic ring?

Answers

The phenyl ring is positioned on the exo side of the bicyclic ring.

To determine the position of the phenyl ring in relation to the bicyclic ring, we need to analyze the structure and bonding of the compound. The terms "exo" and "endo" refer to the relative positions of substituents on a bicyclic system.

In a bicyclic system, the exo position refers to the substituents that are located on the outer side of the ring system, while the endo position refers to the substituents that are located on the inner side of the ring system.

By examining the compound's structure and arrangement, we can identify the relative position of the phenyl ring. If the phenyl ring is attached to the outer side of the bicyclic ring, it will be considered in the exo position. On the other hand, if the phenyl ring is attached to the inner side of the bicyclic ring, it will be considered in the endo position.

Without specific information or a detailed description of the compound's structure, it is not possible to determine the exact identity or position of the phenyl ring.

To learn more about phenyl ring click here

brainly.com/question/31057671

#SPJ11

Determine the number of electron groups around the central atom for each of the following molecules. You may want to reference ( pages 336 - 340) Section 10.7 while completing this problem. Part A CH2Cl2 Express your answer as an integer. ANSWER: electron groups Part B SBr2 Express your answer as an integer. ANSWER: electron groups Part C H2S Express your answer as an integer. ANSWER: electron groups Part D PCl3 Express your answer as an integer. ANSWER: electron groups

Answers

[tex]CH_2Cl_2[/tex] has four electron groups around the central atom, [tex]SBr_2[/tex] has two, [tex]H_2S[/tex] has two, and [tex]PCl_3[/tex] has three.

To determine the number of electron groups around the central atom for each of the given molecules, we first need to identify the central atom in each.

In [tex]CH_2Cl_2[/tex], the central atom is carbon.

Carbon has four valence electrons and is bonded to two hydrogen atoms and two chlorine atoms.

Thus, there are four electron groups around carbon.

In [tex]SBr_2[/tex], the central atom is sulfur, which has six valence electrons.

It is bonded to two bromine atoms, which gives a total of two electron groups.

In [tex]H_2S[/tex], the central atom is sulfur, which has six valence electrons and is bonded to two hydrogen atoms, giving a total of two electron groups.

Finally, in [tex]PCl_3[/tex], the central atom is phosphorus, which has five valence electrons and is bonded to three chlorine atoms, giving a total of three electron groups.

For more such questions on electron, click on:

https://brainly.com/question/26084288

#SPJ11

The number of electron groups around the central atom for each of the given molecules are: CH2Cl2: 4 electron groups, SBr2: 2 electron groups, H2S: 2 electron groups and PCl3: 4 electron groups

In molecular geometry, electron groups refer to the regions of electron density around the central atom. The number of electron groups determines the molecular geometry of the molecule.

In CH2Cl2, the central carbon atom has four electron groups, which result in tetrahedral electron group geometry.

In SBr2, the central sulfur atom has two electron groups, which result in linear electron group geometry.

In H2S, the central sulfur atom has two electron groups, which result in bent electron group geometry.

In PCl3, the central phosphorus atom has four electron groups, which result in trigonal pyramidal electron group geometry.

The knowledge of electron group geometry is important to predict the molecular shape and bond angles of the molecule, which in turn determines the physical and chemical properties of the molecule.

Learn more about molecular geometry here :

https://brainly.com/question/31383201

#SPJ11

the hydronium ion concentration of an aqueous solution of 0.539 m nitrous acid (ka = 4.50×10-4) is

Answers

The hydronium ion concentration in this nitrous acid solution is approximately 0.0147 M.

To find the hydronium ion concentration of an aqueous solution of 0.539 M nitrous acid (HNO₂) with a Ka value of 4.50×10⁻⁴, you'll need to use the following equation:

Ka = [H₃O⁺][NO₂⁻] / [HNO₂]

Since the solution only contains nitrous acid initially, we can assume that the concentrations of H₃O⁺ and NO₂⁻ ions are the same at equilibrium (x).

Thus, the equation can be rewritten as:

4.50×10⁻⁴ = x² / (0.539 - x)

In most cases, x can be assumed to be small compared to the initial concentration (0.539 M), so the equation can be simplified as:

4.50×10⁻⁴ ≈ x² / 0.539

Solve for x (the hydronium ion concentration):

x ≈ √(4.50×10⁻⁴ × 0.539) ≈ 0.0147 M

Learn more about solution at

https://brainly.com/question/31970169

#SPJ11

predict the product for the following reaction. group of answer choices iv ii i none of these iii kmno4

Answers

No, accurate prediction of the product requires knowledge of the reactants and their properties.

Can the product of the given reaction be predicted without specific information about the reactants?

Without specific information about the reactants in the given reaction, it is not possible to accurately predict the product.

The provided answer choices do not provide sufficient context to determine the reaction or its products.

To predict the product of a chemical reaction, it is necessary to know the reactants and their specific properties, as well as the reaction conditions.

Without this information, it is not possible to provide a meaningful prediction.

Learn more about product

brainly.com/question/31815585

#SPJ11

If there are 0.505 g of NaCl left in a beaker that originally contained 75.0 mL of saltwater, what must have been the concentration of the original solution? a. 0.00647 M b. 0.0115 M c. 0.0673 M d. 0.115 M e. 0.673 M

Answers

If there are 0.505 g of NaCl left in a beaker that originally contained 75.0 mL of saltwater, what must have been the concentration of the original solution is  0.673 M.

The correct answer is option e. 0.673 M.

The concentration of the original solution, we need to use the formula:  concentration = amount of solute / volume of solution. First, we need to convert the mass of NaCl to moles. The molar mass of NaCl is 58.44 g/mol.
0.505 g NaCl x (1 mol NaCl/58.44 g NaCl) = 0.00863 mol NaCl.

First, we need to find the number of moles of NaCl. To do this, we will use the molar mass of NaCl (58.44 g/mol). Moles of NaCl = mass (g) / molar mass (g/mol) = 0.505 g / 58.44 g/mol ≈ 0.00864 mol, 2. Next, we will convert the original volume of the solution from mL to L. 75.0 mL = 75.0 / 1000 L = 0.075 L, 3. Finally, we will find the concentration (molarity) of the original solution. Concentration (M) = moles of solute / volume of solution (L) = 0.00864 mol / 0.075 L ≈ 0.115 M
To know more about solution visit:

https://brainly.com/question/30665317

#SPJ11

a rock is lifted 30 meters above the ground using a force of 100N. How much work was done on the rock?

using your answer problem the question above this one, how mu h power was needed to lift the rock assuming it took 3 seconds to lift the rock?

Answers

1000 Watts of power was needed to lift the rock.

To calculate the work done on the rock, we use the formula:

Work = Force x Distance

In this case, the force applied to lift the rock is 100 N, and the distance lifted is 30 meters. Therefore, the work done on the rock is:

Work = 100 N x 30 m = 3000 Joules

So, 3000 Joules of work was done on the rock.

To calculate the power needed to lift the rock, we use the formula:

Power = Work / Time

The work done on the rock is 3000 Joules, and the time taken to lift the rock is 3 seconds. Therefore, the power needed to lift the rock is:

Power = 3000 Joules / 3 seconds = 1000 Watts

For more question on power click on

https://brainly.com/question/2248465

#SPJ11

complete the haworth projection for the cyclic structure of d-mannose by laying down the fischer projection.

Answers

The completion of the Haworth projection for the cyclic structure of D-mannose by laying down the Fischer projection is
            H_O       H
             |       |
       H_O--C--5-O--1--C--4-O_H
             |       |
            H--C--2-O_H H
                 |
                O_H

To complete the Haworth projection for the cyclic structure of D-mannose by laying down the Fischer projection, we first need to draw the Fischer projection of D-mannose.

The Fischer projection of D-mannose is:

       H
        |
   O_H--C--H
        |
   H_O--C--H
        |
   H--C--O_H
        |
       O_H

Now, to convert this Fischer projection into the Haworth projection, we need to follow these steps:

1. Determine the ring size: D-mannose forms a six-membered ring in solution.

2. Identify the anomeric carbon: The anomeric carbon is the carbon that forms the glycosidic bond in the cyclic structure. In D-mannose, this is the carbon that links the hydroxyl group on C5 to the oxygen on C1.

3. Determine the chair conformation: D-mannose adopts the chair conformation in the cyclic structure. The hydroxyl group on C2 is axial, while the hydroxyl groups on C3, C4, and C6 are equatorial.

4. Draw the Haworth projection: Based on the above information, we can draw the Haworth projection of D-mannose as follows:

            H_O       H
             |       |
       H_O--C--5-O--1--C--4-O_H
             |       |
            H--C--2-O_H H
                 |
                O_H

Learn more about Haworth projection: https://brainly.com/question/31819605

#SPJ11

A sample of N2O effuses from a container in 47 seconds. How longwould it take the same amount of gaseous I2 to effuse from the samecontainer under indentical conditions?

Answers

The same amount of gaseous I2 would effuse from the container in approximately 83 seconds.

How long does it take for an equivalent amount of gaseous I2 to effuse from the container?

Effusion is the process by which a gaseous escapes through a small opening into a vacuum. It follows Graham's Law of Effusion, which states that the rate of effusion of a gas is inversely proportional to the square root of its molar mass.

The molar mass of nitrogen dioxide (N2O) is approximately 44 g/mol, while the molar mass of iodine (I2) is approximately 253.8 g/mol. Using this information, we can calculate the ratio of the square roots of their molar masses:

√(molar mass of N2O) / √(molar mass of I2) = √(44) / √(253.8) ≈ 0.333

The ratio indicates that gaseous I2 would effuse at about one-third the rate of N2O. Since N2O took 47 seconds to effuse, we can determine the time it would take for the same amount of gaseous I2 to effuse using the ratio:

Time for I2 to effuse = Time for N2O to effuse / (ratio) = 47 seconds / 0.333 ≈ 141 seconds ≈ 83 seconds (rounded to the nearest whole number).

Learn more about gaseous

brainly.com/question/28278190

#SPJ11

describe all three stages in the 'life cycle' of an atoll. what is the most important characteristic of each stage? you should mention the tectonic aspects of each stage as well.

Answers

Three stages make up an atoll's life cycle: the volcanic, barrier reef, and atoll stages.

The volcanic stage marks the beginning of an atoll's life cycle. A volcanic island is first formed by tectonic activity, such as volcanic eruptions. The formation of the primordial landmass by the deposition of lava and other volcanic materials is this stage's most significant characteristic for the three stages.

The volcanic island experiences subsidence and sinks below sea level during the barrier reef stage. The island begins to develop a bordering reef, and a lagoon forms between the reef and the main mass. The development of the barrier reef, which serves as a defense between the open ocean and the expanding lagoon, is the important feature of this stage.

Erosion and ongoing subsidence cause the volcanic island to totally submerge below sea level during the last stage, sometimes referred to as the atoll stage. What's left is a coral reef that surrounds a centre lagoon in a round or oval configuration. The construction of the atoll, which is characterised by the absence of a landmass and the existence of the coral reef and lagoon, is the most significant aspect of this stage.

Learn more about three stages here:

https://brainly.com/question/31424135


#SPJ11

The most likely location for an electron in H2 is halfway between the two hydrogen nuclei.
Select one:
True
False

Answers

False.The most likely location for an electron in the H2 molecule is not exactly halfway between the two hydrogen nuclei

Rather the electron density is concentrated around the internuclear axis, forming what is known as a bonding molecular orbital. This is the result of the constructive interference between the two atomic orbitals that combine to form the molecular orbital. The electron density is also spread out over a region that extends beyond the internuclear axis, forming what is known as the molecular orbital's "cloud" or "envelope".In the H2 molecule, the electrons are in molecular orbitals which are formed by the combination of the atomic orbitals of the two hydrogen atoms. The two electrons in the H2 molecule are most likely to be found in the bonding molecular orbital, which is lower in energy than the atomic orbitals from which it was formed. The bonding molecular orbital has a shape that is symmetrical around the line joining the two nuclei, which means that the electrons are most likely to be found between the two nuclei. Therefore, the statement "the most likely location for an electron in H2 is halfway between the two hydrogen nuclei" is true.

To know more about nuclei visit :

https://brainly.com/question/21796566

#SPJ11

match the reagent to the extraction layeraqueous,none or organicethanolphosphoric aciddiethyl etherdichloromethane

Answers

 It is less polar than diethyl ether and is often used to extract slightly more polar compounds. It is not suitable for extracting polar compounds from aqueous solutions.

What is the purpose of using different extraction layers in a chemical extraction procedure?

Ethanol is a polar solvent that is miscible with water, so it is typically used as an extraction layer for polar compounds from an aqueous solution. It is not suitable for extracting non-polar compounds from organic solutions.

Phosphoric acid is typically used as an acidic aqueous extraction layer to extract basic compounds from an aqueous solution. It is not suitable for extracting organic compounds.

Diethyl ether is an organic solvent that is commonly used as an extraction layer for non-polar compounds from organic solutions. It is not suitable for extracting polar compounds from aqueous solutions.

Dichloromethane is also an organic solvent that is commonly used as an extraction layer for non-polar compounds from organic solutions. However, it is less polar than diethyl ether and is often used to extract slightly more polar compounds. It is not suitable for extracting polar compounds from aqueous solutions.

Learn more about polar compounds

brainly.com/question/14752836

#SPJ11

calculate the ph of the cathode compartment solution if the cell emf at 298 k is measured to be 0.610 v when [zn2 ]= 0.28 m and ph2= 0.92 atm . express your answer

Answers

The pH of the cathode compartment solution is 9.16, calculated using the Nernst equation and given concentrations and pressures.

To calculate the pH of the cathode compartment solution, we first use the Nernst equation, which relates cell potential (E), standard cell potential (E°), and concentrations/pressures of species.

In this case, the cell reaction involves Zn2+ ions and H2 gas.

By substituting the given values of cell emf (0.610 V), [Zn2+] (0.28 M), and p(H2) (0.92 atm), we can solve for the H+ ion concentration.

Once the H+ ion concentration is calculated, we use the formula pH = -log[H+] to determine the pH, which comes out to be approximately 9.16.

For more such questions on pressures, click on:

https://brainly.com/question/24719118

#SPJ11

The ph of the cathode compartment solution is 1.74.

The given problem involves the determination of pH of the cathode compartment solution using the measured cell emf. The cell emf measurement is based on the Nernst equation, which relates the cell potential to the concentration of the reactants and products in the cell. The Nernst equation is used to calculate the reduction potential of the cell, which is related to the pH of the cathode compartment solution. Using the given information on the concentration of Zn2+ ions and the partial pressure of H2 gas in the cathode compartment, we can calculate the reduction potential of the cell, and hence the pH of the cathode compartment solution. The final answer is obtained by substituting the calculated values into the Nernst equation.

Learn more about compartment solution here:

https://brainly.com/question/15185712

#SPJ11

a mixture of two ideal gases a and b is in thermal equilibrium at 600 k. a molecule of a has one- fourth the mass of a molecule of b and the rms speed of molecules of a is 400 m/s. determine the rms speed of molecules of b.

Answers

The root mean square (rms) speed of molecules of gas B is 200 m/s.

What is the rms speed of molecules?

Given:

Temperature (T) = 600 K

RMS speed of gas A (vA) = 400 m/s

Mass of gas A (mA) = m

Mass of gas B (mB) = 4m (since molecule A has one-fourth the mass of molecule B)

The RMS speed of a gas is given by the equation:

v = √(3RT / m)

We can compare the RMS speeds of gases A and B using the equation above. Since both gases are at the same temperature, the ratio of their RMS speeds is equal to the square root of the ratio of their masses.

vA / vB = √(mB / mA)

Substituting the given values:

400 / vB = √(4m / m)

400 / vB = √4

400 / vB = 2

vB = 400 / 2 = 200 m/s

Therefore, the RMS speed of molecules of gas B is 200 m/s.

To know more about molecules, refer here:

https://brainly.com/question/30465503#

#SPJ4

Complete and balance the following redox equation. What is the coefficient of H2O when the equation is balanced using the set of smallest whole-number coefficients?
MnO−4 + SO2−3 → Mn2+ +SO2−4
(acidic solution)

Answers

The final balanced redox equation is: MnO₄⁻ + SO₃²⁻ + 8H⁺ → Mn²⁺ + SO₄²⁻ + 4H₂O and the coefficient of H₂O when the equation is balanced using the set of smallest whole-number coefficients is 4.

To balance the equation, we need to follow the steps of balancing redox reactions in acidic solutions.

First, we assign oxidation numbers to each element to determine which atoms are being oxidized and reduced. We can see that manganese is being reduced from a +7 oxidation state in MnO₄⁻ to a +2 oxidation state in Mn²⁺, while sulfur is being oxidized from a +4 oxidation state in SO₃²⁻ to a +6 oxidation state in SO₄²⁻.

Next, we balance the number of atoms of each element on both sides of the equation. We start by balancing the elements that are not oxygen or hydrogen, which in this case is manganese. We add a coefficient of 1 in front of MnO₄⁻ and a coefficient of 1 in front of Mn²⁺.

Then, we balance the oxygen atoms by adding water molecules (H₂O) to the side of the equation that needs more oxygen. In this case, we need to add 4 water molecules to the right side to balance the oxygen atoms in the sulfate ion.

Next, we balance the hydrogen atoms by adding hydrogen ions (H⁺) to the side of the equation that needs more hydrogen. In this case, we need to add 8 hydrogen ions to the left side to balance the hydrogen atoms in the permanganate ion and the sulfite ion.

Finally, we balance the charges on both sides of the equation by adding electrons (e⁻). In this case, we need to add 5 electrons to the left side to balance the charges.


To know more about redox equation, refer here:

https://brainly.com/question/14029351#

#SPJ11

draw the full mechanism (arrow-pushing) for the acid-base reaction between triethanolamine and stearic acid.

Answers

The acid-base reaction between triethanolamine and stearic acid involves the deprotonation of stearic acid by triethanolamine.

The amine group in triethanolamine acts as a base and abstracts a proton from the carboxylic acid group in stearic acid. This forms a carboxylate ion and a protonated triethanolamine molecule. Triethanolamine (TEA) is a tertiary amine with three hydroxyl groups. Stearic acid is a long-chain carboxylic acid. In the reaction, one of the hydroxyl groups in TEA acts as a base and deprotonates the carboxylic acid group in stearic acid. The lone pair of electrons on the nitrogen atom in TEA attacks the proton of the carboxylic acid group, breaking the O-H bond and forming a new C-N bond. This results in the formation of a carboxylate ion, where the oxygen of the carboxylic acid group gains a negative charge, and a protonated triethanolamine molecule, where the nitrogen gains a positive charge. The reaction can be represented using arrow-pushing notation to show the movement of electrons throughout the process.

Learn more about triethanolamine here:

https://brainly.com/question/3189819

#SPJ11

Calculate the percent ionization of haha in a 0.10 mm solution.

Answers

To calculate the percent ionization of an acid (Ha) in a solution, we need to consider its dissociation reaction. Assuming Ha dissociates into H+ and A- ions, the equation can be represented as follows:

Ha ⇌ H+ + A-

The percent ionization is the ratio of the concentration of ionized acid (H+) to the initial concentration of the acid (Ha), expressed as a percentage.

In a 0.10 M solution of Ha, let's assume x M of Ha dissociates. The concentration of H+ ions will then be x M. Since the initial concentration of Ha is 0.10 M, the concentration of undissociated Ha will be (0.10 - x) M.

The percent ionization is calculated as follows:

Percent ionization = (concentration of H+ / initial concentration of Ha) × 100

= (x / 0.10) × 100

To determine the value of x, we need to consider the acid dissociation constant (Ka) of Ha. The value of Ka can be used to set up an equilibrium expression and solve for x.

Without the specific value of Ka for Ha, it is not possible to provide an accurate numerical calculation. However, this explanation provides the general approach to determining percent ionization.

By knowing the value of Ka, you can substitute it into the equilibrium expression and solve for x. Then, you can plug that value into the percent ionization formula to find the answer.

To know more about percent ionization refer here

https://brainly.com/question/5838597#

#SPJ11

which nuclide mass carries the highest biding energy? give the answer in amu.

Answers

The nuclide mass that carries the highest binding energy is iron-56, with a binding energy of approximately 8.79 x 10^8 electron volts per nucleon or 4921.9 amu.

Binding energy is the energy required to separate the nucleus into its individual nucleons. Iron-56 has the highest binding energy because it is the most stable nuclide, meaning that it requires the most energy to break apart its nucleons. This high binding energy is also why iron-56 is a commonly used element in nuclear reactors and fusion reactions. In summary, iron-56 has the highest binding energy due to its stability, making it an important element in nuclear applications.


The nuclide with the highest binding energy per nucleon is Iron-56 (Fe-56), which has a mass of approximately 55.935 amu. This means that the nucleons in Fe-56 are most tightly bound, making it the most stable nuclide. This high binding energy is due to the balance between the attractive strong nuclear force and repulsive electrostatic force within the nucleus. As a result, Fe-56 represents the peak of the binding energy curve, and nuclear reactions involving lighter or heavier elements tend to move towards it for increased stability.

To know more about nuclide mass visit:-

https://brainly.com/question/28305887

#SPJ11

Why is the reaction performed in sulfuric acid instead of pure water?
Select all that apply
a. The sulfuric acid is an electrolyte, which increases water's ability to conduct current.
b. The sulfuric acid is present to increase the concentration of protons, which makes the reaction go faster.
c. The sulfuric acid is needed to shift the equilibrium constant to a favorable value.
d. The sulfuric acid catalyzes the reaction.

Answers

The answer is b and c. Sulfuric acid is used instead of pure water in some chemical reactions because it increases the concentration of protons (H+) in the solution, which makes the reaction go faster.

Additionally, sulfuric acid can shift the equilibrium constant to a more favorable value, thus making the reaction more efficient. The increase in proton concentration is due to the dissociation of sulfuric acid, which is an electrolyte. However, it is not a catalyst in most cases. Therefore, the use of sulfuric acid in chemical reactions is not only to increase the solution's conductivity but also to increase the concentration of protons and shift the equilibrium to a favorable value.

To know more about Sulfuric acid visit:

https://brainly.com/question/30039513

#SPJ11

what is the minimum amount of solvent (water) in ml required to recrystallize 5.2 grams of salicylic acid contaminated with 1.3% benzoic acid? compound solubility in water at 25c solubility in water at 100c salicylic acid 0.26 g/100ml 7.5 g/100ml benzoic acid 0.34g/100ml 5.6g/100 ml a. 1529 ml b. 792 ml c. 69 ml d. 93 ml e. 2000 ml 8. if the recrystallized material from question 7 is isolated by filtration at room temperature, calculate the expected % recovery of salicylic acid. a. 100 % b. 87 % c. 94 % d. 92 % e. 96 % 9. determine the amount of compound a that would be extracted into 8.0 ml of diethyl ether after one extraction of 7.00 g of compound a dissolved in 12.5 ml of water. the distribution coefficient (kd) of compound a in diethyl ether and water is 3.5. (2 pts) a. 4.83 g b. 4.97 g c. 3.96 g d. 5.12 g e. 6.44 g 10. if the extracted amount of compound a in question 9 is recovered by separating the diethyl ether layer from the water layer [using a separatory funnel] and then evaporating diethyl ether, calculate the % recovery of a for this extraction process. (1.5 pts) a. 69 % b. 71 % c. 57 % d. 73 % e. 92 %

Answers

Answer:

Explanation:

2.4 Solvent. is the minimum amount of solvent (water) in ml required to recrystallize 5.2 grams of salicylic acid contaminated with 1.3% benzoic acid? compound solubility in water at 25c solubility in water at 100c salicylic acid 0.26 g/100ml 7.5 g/100ml benzoic acid 0.34g/100ml 5.6g/100 ml a. 1529 ml b. 792 ml c. 69 ml d. 93 ml e. 2000 ml 8. if the recrystallized material from question 7 is isolated by filtration at room temperature, calculate the expected % recovery of salicylic acid. a. 100 % b. 87 % c. 94 % d. 92 % e. 96 % 9. determine the amount of compound a that would be extracted into 8.0 ml of diethyl ether after one extraction of 7.00 g of compound a dissolved in 12.5 ml of water. the distribution coefficient (kd) of compound a in diethyl ether and water is 3.5. (2 pts) a. 4.83 g b. 4.97 g c. 3.96 g

From each of the following pairs, choose the nuclide that is radioactive (One is known to be radioactive, the other stable.) Explain your choice 102 a 47 189 47 bMg. 2Nc 10 203 c 81 275 90

Answers

The radioactive nuclide from each pair is:

a) 102 a 47
c) 81 275 90

In pair (102 a 47 vs. 189 47 bMg), the nuclide with atomic number 102 is known to be unstable and radioactive, while the nuclide with atomic number 189 is stable. This is because nuclides with atomic numbers higher than 83 tend to be unstable due to the large number of protons in the nucleus, which creates a strong repulsive force between them.

In pair (203 c vs. 81 275 90), the nuclide with atomic number 90 is known to be unstable and radioactive, while the nuclide with atomic number 81 is stable. This is because nuclides with atomic numbers higher than 82 tend to be unstable due to the large number of protons in the nucleus, which makes it difficult to maintain a stable ratio of neutrons to protons. Therefore, 81 275 90 is the radioactive nuclide in this pair.
To know more about atomic visit

https://brainly.com/question/1770619

#SPJ11

A student was given a 10 mL sample of a clear, colorless liquid. She was assigned the task of identifying the unknown liquid and was told that the sample could be methanol (CH_3OH), acetone (C_3H_6O), or ethanol (C_2H_5OH). She decided to attempt to determine the molar mass of the liquid by the vapor density method, which involves completely vaporizing a small sample of the liquid, cooling it and determining the mass of the condensed vapor. She also collects the volume of the container, temperature and pressure when the liquid is vaporized. The following data were collected: Fill in the missing data in the data table. What could account for the difference in the masses in the two trials? Determine the molar masses for each trial, showing all calculations.

Answers

The difference in masses between the two trials could be due to experimental error, such as variations in the amount of liquid used or in the accuracy of the measurements taken.

The molar mass of the liquid can be calculated using the ideal gas law, where m is the mass of the condensed vapor, V is the volume of the container, R is the gas constant, T is the temperature in kelvin, and P is the pressure in pascals. The molar masses calculated for each trial are:

Trial 1: M = (mRT/PV) = (1.97 g)(0.08206 L·atm/mol·K)(358 K)/(101.3 kPa)(0.01 L) = 32.0 g/mol

Trial 2: M = (mRT/PV) = (1.65 g)(0.08206 L·atm/mol·K)(358 K)/(98.7 kPa)(0.01 L) = 27.9 g/mol

Comparing the calculated molar masses to the known molar masses of methanol, acetone, and ethanol, the unknown liquid is most likely acetone (molar mass = 58.08 g/mol).

Learn more about molar mass here;

https://brainly.com/question/22997914

#SPJ11

what percent-by-mass concentration of koh is a solution is prepared by adding 18.0 g of koh to 95.0 g of water

Answers

The percent-by-mass concentration of KOH in the solution will be approximately 15.93%.

To find the percent-by-mass concentration of KOH in the solution, we need to calculate the mass of KOH and the total mass of the solution.

Mass of KOH = 18.0 g (given)

Mass of water = 95.0 g (given)

Total mass of the solution = Mass of KOH + Mass of water

= 18.0 g + 95.0 g

= 113.0 g

Now, we can calculate the percent-by-mass concentration of KOH

Percent-by-mass concentration of potassium hydroxide = (Mass of KOH / Total mass of the solution) × 100

Substituting the values;

Percent-by-mass concentration of KOH = (18.0 g / 113.0 g) × 100

≈ 15.93%

Therefore, the percent-by-mass will be 15.93%.

To know more about percent-by-mass here

https://brainly.com/question/14990953

#SPJ4

Excess hydrogen iodide is added to 50. 0 g of chromium (II)


selenide. What mass of hydrogen selenide is produced?

Answers

When excess hydrogen iodide is added to 50.0 g of chromium (II) selenide, the mass of hydrogen selenide produced is 30.56 by using stoichiometry calculations.

To solve this problem, we need to use the balanced chemical equation and apply stoichiometry. The balanced equation for the reaction between hydrogen iodide (HI) and chromium (II) selenide (CrSe) is:

2 HI + CrSe → [tex]H_2Se[/tex]+ [tex]CrI_2[/tex]

From the equation, we can see that 2 moles of HI react with 1 mole of CrSe to produce 1 mole of [tex]H_2Se[/tex]. We'll start by calculating the number of moles of CrSe using its molar mass.

molar mass of CrSe = atomic mass of Cr + atomic mass of Se

= (52.0 g/mol) + (79.0 g/mol)

= 131.0 g/mol

moles of CrSe = mass of CrSe / molar mass of CrSe

= 50.0 g / 131.0 g/mol

= 0.382 moles

Since the reaction is 1:1 between CrSe and [tex]H_2Se[/tex], the moles of [tex]H_2Se[/tex]produced will be equal to the moles of CrSe. Therefore, the mass of [tex]H_2Se[/tex]can be calculated by multiplying the moles of CrSe by its molar mass.

mass of [tex]H_2Se[/tex]= moles of [tex]H_2Se[/tex]* molar mass of [tex]H_2Se[/tex]

= 0.382 moles * (80.0 g/mol)

= 30.56 g

Therefore, the mass of hydrogen selenide produced is 30.56 g.

Learn more about stoichiometry here:

https://brainly.com/question/28780091

#SPJ11

what is the ph of a buffer solution that is made up of 0.100 m sodiu, formate. and 0.100 m formic acid

Answers

The pH of the buffer solution made up of 0.100 M sodium formate and 0.100 M formic acid is approximately 4.75.

What is the pH of a solution containing 0.100 M sodium formate and 0.100 M formic acid?

A buffer solution consists of a weak acid and its conjugate base or a weak base and its conjugate acid. In this case, formic acid (HCOOH) is a weak acid, and sodium formate (HCOONa) is its conjugate base.

When these two components are present in equal concentrations, they form a buffer solution.

The pH of a buffer solution is determined by the equilibrium between the weak acid and its conjugate base. Formic acid is a weak acid that partially dissociates in water, releasing hydrogen ions (H+).

The conjugate base, sodium formate, can accept these hydrogen ions.

This equilibrium reaction helps maintain a stable pH in the solution.

In the case of the given buffer solution, the pKa (acid dissociation constant) of formic acid is approximately 3.75. The pH of a buffer solution can be calculated using the Henderson-Hasselbalch equation:

pH = pKa + log([conjugate base]/[weak acid])

Using the given concentrations (0.100 M), the pH can be calculated as follows:

pH = 3.75 + log(0.100/0.100) = 3.75 + log(1) = 3.75 + 0 = 3.75

Therefore, the pH of the buffer solution is approximately 4.75.

Learn more about sodium formate

brainly.com/question/31597722

#SPJ11

Other Questions
Given a pure renewal process {N(t) : t 0} and the cdf F() of 1, derive the renewal-type equation for H(t) := m(t) = E[N(t)]. In other words, determine the function D(t) such that the renewal-type equation holds. In a boundary-spanning process, the marketing team member who meets with someone from manufacturing to work out how a coupon might be Integrated Into the product packaging materlals is engaging in Multiple Choice production blocking. ambassador actlvities. scout activitles. decision Informity activities. task coordinator actlvitles. Any investment expenditure by a government is part of this expenditures approach for calculating the GDP.Responsesgross importsgross importssum of all the country's businesses spending on capitalsum of all the country's businesses spending on capitalgross exportsgross exportsconsumer spendingconsumer spendingsum of government spendingsum of government spending You run a digestion using BglII (pronounced "bagel two"), which cuts using the restriction site seen above. The digestion is on a plasmid 4 kilobases (kb) in size. There are two BglII sites on the plasmid, splitting the plasmid into two pieces, one 3 kb in size (the backbone) and one 1 kb in size (the insert). You then add a new lkb insert, and perform the ligation reaction. When you run the gel post-ligation, you get the result to the right, with the ladder shown on the left lane. You are sure there is no contamination. Explain each of the 5 bands in the gel. State the size of each band (e.g. 1 kb) followed by a short, 1-2 sentence description of what the band represents (e.g. the insert) HeIp Rewrite the expression 0. 75 + 0. 5(d - 1) as the sum of two terms to train employees, answer questions, and provide guidance in doing a task, managers need a process that removes the outer layer of the grinding wheel that has worn out grit and is clogged with swarf (chips), and exposes fresh grit with sharper edges, is called:A. ReshapingB. Wheel SharpeningC. DressingD. Forming The number of CDs per hour that Snappy Hardware can manufacture at its plant is given by P=064 where x is the number of workers at the plant and y is the monthly budget in dollars. Assuming that P is constant.compute dy/d when w100 and y 120,000, Coninuing with the previous problem,give an interpretation in 3 parts of the value you computed in terms of CDs produced by Snoppy Hardware. Using the data set below, what would be the forecast for period 4 using a three period moving average: (Choose the closest answer.) Period wN Actual Demand 10,000 12,400 13,250 15,750 20,500 18,500 O a. 12,244 O b. 11,500 O c. 11,883 O d. 14,008 Using the data set below, what would be the forecast for period 5 using a four period weighted moving average? The weights for each period are 0.05, 0.15, 0-30, and 0.50 from the oldest period to the most recent period, respectively. (Choose the closest answer.) Period Actual Demand 10,000 12,400 13,250 14,750 15,220 18,500 O O O O a. 13,105 b. 13,710 c. 14,610 d. 12,820 "The day shift nurse asks an LPN/LVN to complete a task for a patient. The day shift nurse is engaging in what function?a. Delegatingb. Assigningc. Sharingd. Authorizing" Justin wraps a gift box in the shape of a right rectangular prism. The figure below shows a net for the gift box. suppose that x is a discrete random variable following a geometric distribution, where suppose n observations are obtained independently from this distribution HELP HELP HELPwhats the partial pressure of argon in a mixed gas containing 0.522 atm of He, 322 mm Hg of Ne, and argon if the total pressure is 187 kPa Calculate the percent ionization of haha in a 0.10 mm solution. For the next three problems, consider 1.0 L of a solution which is 0.6 M HC2H3O2 and 0.2 M NaC2H3O2 (Ka for HC2H3O2 = 1.8 x 10-5). Assume 2 significant figures in all of the given concentrations so that you should calculate all of the following pH values to two decimal places. Calculate the pH of this solution. A cell containing 10 chromosomes prior to mitosis will contain how many chromosomes in each daughter cell following mitosis? Use the Debye approximation to find the following thermodynamic functions of a solid as a function of the absolute temperature T: (a) In Z, where Z is the partition function (b) the mean energy (c) the entropy S 436 PROBLEMS Express your answers in terms of the function 3 D(y) = y? 'y z da o e* - 1 so" **.241 and in terms of the Debye temperature OD wmax/k. Classiy the following phase changes as processes that require the input of energy, or as processes that have a net output of energy Drag the appropriate items to their respective bins. View Available Hint(s)freezing deposition condensing vaporizing melting subliming Output of energy Input of energy which of the following is an involuntary behavior? a. hearing b. active listening c. paraphrasing d. listening Find average speed of car in km/h given that it took 2 hours 15 minutes to travel 198 km