Answer:
50°
Step-by-step explanation:
The sum of angles in a triangle is 180 degrees
Hence given that in a triangle ACB with angles 90°, 4x°, 7x - 20
As such
90 + 4x + 7x -20 = 180
simplify
11x + 70 = 180
11x = 180 - 70
11x = 110
Divide both sides by 11
x = 110/11
x = 10
m∠ACB is 7x - 20
Substitute the value of x into the expression
= 7(10) - 20
= 70 - 20
= 50
Answer:
The answer is 50 degrees
Step-by-step explanation:
solve the following expontential equation. express your answer as both an exact expression and a decimal approxaimation rounded to two deicmal places e^2x-6=58^ x/10
To solve the exponential equation e^(2x) - 6 = (58^x) / 10, follow these steps:
Step 1: Add 6 to both sides of the equation.
e^(2x) = (58^x) / 10 + 6
Step 2: Rewrite the right side of the equation as a common base (e).
e^(2x) = e^(x * ln(58/10)) + 6
Step 3: Set the exponents equal to each other, as the bases are equal.
2x = x * ln(58/10)
Step 4: Solve for x.
x = 2x / ln(58/10)
Step 5: Calculate the decimal approximation of x rounded to two decimal places.
x ≈ 2.07
So, the exact expression for the solution of the exponential equation is x = 2x / ln(58/10), and the decimal approximation is x ≈ 2.07.
To know more about exponents refer here:
https://brainly.com/question/219134?#
SPJ11
Suppose that you are offered the following deal. you roll a die. if you roll a 1, you win $15. if you roll a 2, 3, or 4 you win $10. if you roll a 5, or 6, you pay $20
The given scenario can be solved by using the concept of probability.
Let A be the event that a player wins money.
Then, the probability of A, P(A) is given as:
P(A) = (1/6 x 15) + (3/6 x 10) - (2/6 x 20)
where (1/6 x 15) is the probability of getting a 1 multiplied by the amount won on getting a 1, (3/6 x 10) is the probability of getting 2, 3 or 4 multiplied by the amount won on getting these, and (2/6 x 20) is the probability of getting 5 or 6 multiplied by the amount lost.
On solving the above equation,
we get P(A) = $1.67
This means that on an average, the player will win $1.67 per game.
Therefore, it is not a good deal to accept.
To know more about probability, visit:
https://brainly.com/question/31828911
#SPJ11
Simplify. Express your answer using positive exponents. J^-1/j^-5
In algebra, negative exponents can be transformed into positive exponents by taking the reciprocal of the base raised to the power of the absolute value of the exponent.
In order to simplify J^-1/j^-5, we can use the exponent rule which states that a^-n=1/a^n where n is any integer.
Explanation:J^-1/j^-5 = J^5/J^1J^5/J^1 can also be simplified to J^(5-1) or J^4.Thus, J^-1/j^-5 simplified to J^4 using positive exponents.Let us explain the concept of positive exponents.Positive exponents are a shorter way of writing the multiplication of a number or variable with itself several times.
The number that is being multiplied is called the base, and the exponent represents the number of times the base is being multiplied by itself. It is also known as an index, power, or degree.
In algebra, negative exponents can be transformed into positive exponents by taking the reciprocal of the base raised to the power of the absolute value of the exponent.
Know more about exponent rule here,
https://brainly.com/question/29390053
#SPJ11
Question 4. [3 + 3 pts) Rolling an unbiased die. (a) You roll a die 12 times and denote by X the number of sixes that you throw. What is the distribution of X? Compute P(X < 4). (b) Let X be the number of the throw on which you roll a six for the first time. What is the distribution of X? Compute P(X > 12) and describe this event in plain English.
(a) X follows a binomial distribution with n = 12 and p = 1/6; P(X < 4) = 0.873. (b) X follows a geometric distribution with p = 1/6; P(X > 12) = (5/6)^12 ≈ 0.0326, meaning the event of not rolling a six in the first 12 throws.
(a) The distribution of X is a binomial distribution with parameters n = 12 (number of trials) and p = 1/6 (probability of success on each trial, i.e., rolling a six). We can compute P(X < 4) as follows:
P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)
= (5/6)^12 + 12(1/6)(5/6)^11 + 66(1/6)^2(5/6)^10 + 220(1/6)^3(5/6)^9
≈ 0.918
(b) The distribution of X is a geometric distribution with parameter p = 1/6 (probability of success, i.e., rolling a six on each trial). We can compute P(X > 12) as follows:
P(X > 12) = (5/6)^12
≈ 0.032
This event describes the probability that it takes more than 12 rolls to get the first six. In other words, after rolling the die 12 times, you still have not rolled a six.
To know more about binomial distribution,
https://brainly.com/question/31197941
#SPJ11
This table shows information about the heights in cm of a group of year 11 girls complete the boxplot for this information
The boxplot for this information should be completed with this five-number summary:
Least height = 143 cm.Lower quartile (Q₁) = 159 cm.Median = 165 cm.Upper quartile (Q₃) = 167 cm.Maximum height = 176 cm.How to calculate the maximum height and the third quartile?In Mathematics and Statistics, the range of a data set can be calculated by using this mathematical expression;
Range = Highest number - Lowest number
Range = Maximum height - Least height
33 = Maximum height - 143
Maximum height = 143 + 33
Maximum height = 176 cm.
In Mathematics and Statistics, the interquartile range (IQR) of a data set is the difference between upper quartile (Q₃) and the lower quartile (Q₁):
Interquartile range (IQR) of data set = Q₃ - Q₁
8 = Upper quartile (Q₃) - 159
Upper quartile (Q₃) = 159 + 8
Upper quartile (Q₃) = 167 cm.
Read more on interquartile range here: https://brainly.com/question/2453403
#SPJ4
Missing information:
The question is incomplete and the complete question is shown in the attached picture.
consider the function ()=1−9. give the taylor series for () for values of near 0.
The Taylor series for f(x) = 1/(1-9x) near 0 is:
1 + 9x + 81x^2 + 729x^3 + ...
To find the Taylor series for f(x), we can use the formula:
f(x) = f(a) + f'(a)(x-a) + (f''(a)/2!)(x-a)^2 + (f'''(a)/3!)(x-a)^3 + ...
where f'(x) represents the first derivative of f(x), f''(x) represents the second derivative of f(x), and so on.
In this case, f(x) = 1/(1-9x), so we need to find its derivatives:
f'(x) = 9/(1-9x)^2
f''(x) = 162/(1-9x)^3
f'''(x) = 1458/(1-9x)^4
and so on.
Now we can plug in a = 0 and evaluate the derivatives at a:
f(0) = 1
f'(0) = 9
f''(0) = 162
f'''(0) = 1458
Plugging these values into the formula, we get:
f(x) = 1 + 9x + 81x^2 + 729x^3 + ...
which is the Taylor series for f(x) near 0.
For more questions like Series click the link below:
https://brainly.com/question/28167344
#SPJ11
We can evaluate the length of the path by using the arc length formula L=∫ba√(dxdt)2+(dydt)2 dt L = ∫ a b ( d x d t ) 2 + ( d y d t ) 2 d t over the interval [a,b] .
The arc length formula to evaluate the length of a path is L = ∫ a b √(dx/dt)² + (dy/dt)² dt over the interval [a,b].
Suppose we have a curve defined by the parametric equations x(t) and y(t) for a ≤ t ≤ b. To find the length of this curve, we need to evaluate the integral of the arc length formula over the interval [a,b]. Here's how we do it:
L = ∫ a b √(dx/dt)² + (dy/dt)² dt
where dx/dt and dy/dt represent the first derivatives of x(t) and y(t) with respect to t, respectively.
We can simplify this formula by using the Pythagorean theorem, which tells us that the length of the hypotenuse of a right triangle is equal to the square root of the sum of the squares of the other two sides. In this case, we can think of the horizontal component dx/dt and the vertical component dy/dt as the other two sides of a right triangle, with the arc length L as the hypotenuse. Therefore, we have:
L = ∫ a b √(dx/dt)² + (dy/dt)² dt
= ∫ a b sqrt[(dx/dt)² + (dy/dt)²] dt
This formula tells us that to find the arc length L, we need to integrate the square root of the sum of the squares of the first derivatives of x(t) and y(t) with respect to t, over the interval [a,b].
To know more about Pythagorean theorem, visit;
https://brainly.com/question/343682
#SPJ11
Which triangles are similar? 12 5 13 67° 23° Triangle A 10 67° 37° 20 16 Triangle B 26 23 24 Triangle C 53% A. Triangles A and C OB. Triangles A, B, and C O C. Triangles A and B OD. Triangles B and C 2
C. Triangles A and B are similar.
How to determine the triangles that are similar?To find out the similar triangles, we should check if their corresponding angles are congruent and their corresponding sides are proportional.
Triangle A angles = 67° and 23°, and the third angle must be 90° (since the angles in a triangle add up to 180°). So, we shall use the Pythagorean theorem to find the length of the third side:
[tex]\sqrt(13^2 - 5^2)[/tex] = [tex]\sqrt144[/tex]) = 12
So, the side lengths of Triangle A are 5, 12, and 13.
Triangle B angles = 67° and 37°, 3rd angle = 76°. We will use the Law of Sines to find the length of 3rd side:
10/sin(67°) = 20/sin(76°)
sin(76°) = (20sin(67°))/10 = 2sin(67°)
sin(76°)/sin(23°) = 2sin(67°)/sin(23°) = 2(5/13) = 10/13
So, the side lengths of Triangle B are 10, 20, and 13*(10/13) = 10.
Triangle C's side lengths 26, 23, and 24. We can use the Law of Cosines to find its angles:
cos(A) = (23² + 24² - 26²)/(22324) = 25/46
A = cos⁻¹(25/46) ≈ 56.8°
In the same way, let's find the other angles of Triangle C:
cos(B) = (24² + 26² - 23²)/(22426) ≈ 63.2°
cos(C) = (23² + 26² - 24²)/(22326) ≈ 60.0°
Triangle C's angles are ≈ 56.8°, 63.2°, and 60.0°.
Now we check the triangles that are similar:
A. Triangles A and C are not similar because they have no congruent angles or proportional sides.
Same goes to B. Triangles A, B, and C.
But C. Triangles A and B are similar because they have congruent angles of 67°.
We can check if their sides are proportional:
5/10 = 1/2
12/20 = 3/5
13/10 = 1.3
So, the sides of Triangle A are proportional to the sides of Triangle B with a ratio of 1:2:1.3.
D. Triangles B and C are not similar, have no congruent angles or proportional sides.
Therefore, triangles A and B are similar.
Learn more about similar triangles at brainly.com/question/30104125
#SPJ1
What is the equation of a parabola that intersects the x-axis at points (-1, 0) and (3,0)?
The equation of the parabola that intersects the x-axis at points (-1, 0) and (3,0) is y = 0.
Given that a parabola intersects the x-axis at points (-1, 0) and (3,0).We know that, when a parabola intersects the x-axis, the y-coordinate of the point on the parabola is 0. Therefore, the two x-intercepts tell us two points that are on the parabola.Thus the vertex is given by:Vertex is the midpoint of these x-intercepts=(x_1+x_2)/2=(-1+3)/2=1The vertex is the point (1,0).Since the vertex is at (1,0) and the parabola intersects the x-axis at (-1,0) and (3,0), the axis of symmetry is the vertical line passing through the vertex, which is x=1.We also know that the parabola opens upwards because it intersects the x-axis at two points.To find the equation of the parabola, we can use the vertex form:y = a(x - h)^2 + kwhere (h, k) is the vertex and a is a constant that determines how quickly the parabola opens up or down.We have h=1 and k=0.Substituting in the x and y values of one of the x-intercepts, we get:0 = a(-1 - 1)^2 + 0Simplifying, we get:4a = 0a = 0Substituting in the x and y values of the other x-intercept, we get:0 = a(3 - 1)^2 + 0Simplifying, we get:4a = 0a = 0Since a = 0, the equation of the parabola is:y = 0(x - 1)^2 + 0Simplifying, we get:y = 0Hence the equation of the parabola that intersects the x-axis at points (-1, 0) and (3,0) is y = 0.
Learn more about Parabola here,The vertex of a parabola is (-2,6), and its focus is (-5,6).
What is the standard form of the parabola?
Enter your answe...
https://brainly.com/question/25651698
#SPJ11
Cornelius is building a solar system model. He plans on making a circular ring around one of the planets out of wire. He wants to know how long he should make the wire to position around the planet. Select all the formulas that could be used to determine the length of the circular ring
The formulas that could be used to determine the length of the circular ring around the planet are:
1) Circumference of a circle: C = 2πr
2) Arc length formula: L = θr
To determine the length of the circular ring around the planet, Cornelius can use the formulas for the circumference of a circle (C = 2πr) and the arc length formula (L = θr).
The circumference of a circle is the distance around the circle. It can be calculated using the formula C = 2πr, where C represents the circumference and r represents the radius of the circle. In this case, Cornelius can measure the radius of the circular ring he wants to create and use the formula to determine the length of the wire needed to encircle the planet.
Alternatively, if Cornelius wants to position the wire at a specific angle (θ) around the planet, he can use the arc length formula. The arc length (L) is given by L = θr, where θ represents the angle (in radians) and r represents the radius of the circle. By specifying the desired angle, Cornelius can calculate the length of the wire needed to form the circular ring.
Learn more about angle here:
https://brainly.com/question/31818999
#SPJ11
do the following study results require a post-hoc test to be performed? when testing four groups, it was found that exercise does not affect memory f(3,26)1.92,p>.05 yes no
Yes, the study results require a post-hoc test to be performed.
Since the main analysis, an ANOVA test, showed a non-significant result (F(3,26) = 1.92, p > .05), it may be tempting to conclude that there is no difference among the four groups. However, to ensure the accuracy of the findings, a post-hoc test should be conducted.
A post-hoc test is necessary because it helps to identify if there are any specific pair-wise differences among the groups that were not detected by the initial ANOVA test. Although the overall result may not be significant, there might still be significant differences between specific group pairs.
By conducting a post-hoc test, you can reduce the risk of Type II errors (false negatives) and better understand the underlying relationships between exercise and memory in the study. Some popular post-hoc tests include Tukey's HSD, Bonferroni, and Scheffe tests.
To know more about ANOVA test click on below link:
https://brainly.com/question/31192222#
#SPJ11
Researchers investigating characteristics of gifted children col-lected data from schools in a large city on a random sample of thirty-six children who were identifiedas gifted children soon after they reached the age of four. The following histogram shows the dis-tribution of the ages (in months) at which these children first counted to 10 successfully. Alsoprovided are some sample statistics
The histogram provides a visual representation of the data collected by the researchers investigating the characteristics of gifted children.
The data from schools in a large city on a random sample of thirty-six children who were identified as gifted children soon after they reached the age of four.
The following histogram shows the distribution of the ages (in months) at which these children first counted to 10 successfully.
Also provided are some sample statistics.
The statistics that can be determined from the given histogram are:
The mean age at which these children first counted to 10 successfully is about 38 months.
The range of the ages is approximately 18 months, from 24 months to 42 months.
50% of the children first counted to 10 successfully between about 33 and 43 months of age.
68% of the children first counted to 10 successfully between about 30 and 46 months of age.
To know more about statistics visit:
https://brainly.com/question/32201536
#SPJ11
Mary is making 5 necklaces for her friends, and she needs 11/12 of a foot of string for each necklace. How many feet of string does she need?
A. 5 11/12 feet
B. 4 7/12 feet
C. 7 4/12 feet
D. 3 7/12 feet
Mary needs 4 7/12 feet of string for the 5 necklaces. The answer is option B.
How to solve for the string neededTo find how many feet of string Mary needs for 5 necklaces, we can multiply the length of string needed for each necklace by the number of necklaces.
Length of string needed for each necklace = 11/12 feet
Number of necklaces = 5
Total length of string needed = (Length of string needed for each necklace) * (Number of necklaces)
Total length of string needed = (11/12) * 5
Total length of string needed = 55/12 feet
To simplify the fraction, we can convert it to a mixed number:
Total length of string needed = 4 7/12 feet
Therefore, Mary needs 4 7/12 feet of string for the 5 necklaces. The answer is option B.
Read more on unit rate here:https://brainly.com/question/4895463
#SPJ1
Let x1, x2,...,x0 be distinct Boolean random variables that are inputs into some logical circuit. How many distinct sets of inputs are there? (e. g. (1, 0, 1, 0, 1, 0, 1, 0, 1, 0) would be one such input)
For n distinct Boolean random variables, there are 2ⁿ distinct sets of inputs.
To answer your question, there are 2ⁿ distinct sets of inputs for n Boolean random variables.
In this case, we have 10 Boolean random variables, so there are 2¹⁰ = 1024 distinct sets of inputs.
This is because each Boolean variable can take on one of two values (0 or 1), and there are n variables in total. So for each variable, there are 2 possible values, giving a total of 2ⁿ possible combinations of inputs.
For example, with just 2 Boolean variables, there are 2² = 4 possible combinations: (0,0), (0,1), (1,0), and (1,1). With 3 variables, there are 2^3 = 8 possible combinations, and so on.
So in summary, for n distinct Boolean random variables, there are 2^n distinct sets of inputs.
Know more about Boolean random variables here:
https://brainly.com/question/17012084
#SPJ11
estimate the surface area of the earth facing the sun (in km2).
The surface area of the Earth facing the Sun is approximately 127,400,000 square kilometers.
What is the surface area of the part of the Earth that is directly facing the Sun and receives sunlight?The surface area of the Earth facing the Sun is a measurement of the total area of the part of the Earth that receives sunlight. It is estimated to be approximately 127,400,000 square kilometers. This area changes as the Earth rotates on its axis and as it moves in its orbit around the Sun.
To arrive at this estimate, we must first understand that the Earth is approximately a sphere with a radius of about 6,371 kilometers. Therefore, the total surface area of the Earth is 4πr² or about 510,072,000 square kilometers.
To calculate the surface area of the Earth facing the Sun, we need to consider that the sunlight falls on only one-half of the Earth at any given time. Therefore, the surface area of the Earth facing the Sun is approximately half of the total surface area of the Earth, or 255,036,000 square kilometers. However, since the Earth is not perfectly flat and has some curvature, the sunlight does not fall evenly on every point. Hence, the actual surface area of the Earth facing the Sun is estimated to be around 127,400,000 square kilometers.
Learn more about surface area
brainly.com/question/30727319
#SPJ11
What method of studying divorce is likely being used if a researcher primarily gathers data from the Census and the General Social Survey
The method of studying divorce that is likely being used if a researcher primarily gathers data from the Census and the General Social Survey is a secondary data analysis approach. The secondary data analysis approach involves the use of pre-existing data, for instance, census data and the General Social Survey in this case.
The approach offers researchers a chance to use data that has been collected for other purposes but can answer their research questions without having to collect new data.Secondary data are widely utilized in social sciences as they save researchers time and money that would otherwise be utilized in collecting data themselves. In this case, using the census data and the General Social Survey data enables researchers to identify patterns of marriage and divorce in the population and come up with conclusions on how divorce affects society without collecting data themselves.
The data gathered from the census and General Social Survey provides information that may not be obtainable through other data collection methods, making the approach reliable.Using secondary data to research divorce has several advantages, such as;
The method is economical as it eliminates the cost of collecting new data. The census and General Social Survey data are relatively cheap and readily available.The method is time-saving since data is already collected. Researchers will not need to start the data collection process from scratch, hence reducing the amount of time needed to conduct research.
The method is reliable, and the data collected is of high quality since it has been gathered using standardized procedures. Also, the data gathered from the census is considered reliable since it covers the whole population.
To know more about data visit:
https://brainly.com/question/32036048
#SPJ11
A grocery store has advertised a sale on ice cream. Each carton of any flavor of ice cream cost 4. 00, if Cecy buys one carton of strawberry icecream, and one carton of chocolate icecream. Write an algebraic expression that represents the total cost of buying the icecream
The algebraic expression that represents the total cost of buying one carton of strawberry ice cream and one carton of chocolate ice cream is 4.00 + 4.00 = 8.00.
Let's break down the given information step by step. The grocery store is offering a sale on ice cream, and each carton of any flavor costs 4.00. Cecy wants to buy one carton of strawberry ice cream and one carton of chocolate ice cream.
To represent the total cost algebraically, we need to add the cost of the strawberry ice cream to the cost of the chocolate ice cream. Since each carton costs 4.00, we can write the expression as 4.00 + 4.00.
By adding the two terms, we get 8.00, which represents the total cost of buying one carton of strawberry ice cream and one carton of chocolate ice cream.
Therefore, the algebraic expression 4.00 + 4.00 = 8.00 represents the total cost of buying the ice cream.
Learn more about total cost here:
https://brainly.com/question/29188755
#SPJ11
Apply the Laplace transform to the differential equation, and solve for Y(s). DO NOT solve the differential equation. Recall: h(t – a) is the unit step function shifted to the right α units. y'' + 16y = (3t – 6)h(t – 2) – (3t – 9)h(t – 3), y(0) = y'(O) = 0 Y(s) = ____
The Laplace transform of the solution y(t) is Y(s) = (3/s * e^(-2s) - 6/s * e^(-2s) - 3/s * e^(-3s) + 9/s * e^(-3s)) / (s^2 + 16).
To apply the Laplace transform to the given differential equation, we use the linearity property of the Laplace transform and the fact that the Laplace transform of the unit step function is 1/s e^(-as):
L[y'' + 16y] = L[(3t – 6)h(t – 2) – (3t – 9)h(t – 3)]
s^2 Y(s) - s y(0) - y'(0) + 16Y(s) = 3/s * e^(-2s) - 6/s * e^(-2s) - 3/s * e^(-3s) + 9/s * e^(-3s)
Since y(0) = y'(0) = 0, the first two terms on the left-hand side are zero, and we can solve for Y(s):
s^2 Y(s) + 16Y(s) = 3/s * e^(-2s) - 6/s * e^(-2s) - 3/s * e^(-3s) + 9/s * e^(-3s)
Y(s) (s^2 + 16) = 3/s * e^(-2s) - 6/s * e^(-2s) - 3/s * e^(-3s) + 9/s * e^(-3s)
Y(s) = (3/s * e^(-2s) - 6/s * e^(-2s) - 3/s * e^(-3s) + 9/s * e^(-3s)) / (s^2 + 16)
Therefore, the Laplace transform of the solution y(t) is Y(s) = (3/s * e^(-2s) - 6/s * e^(-2s) - 3/s * e^(-3s) + 9/s * e^(-3s)) / (s^2 + 16). Note that we have not solved the differential equation yet; this is just the Laplace transform of the solution.
To know more about Laplace transform refer here:
https://brainly.com/question/31481915
#SPJ11
The length of one kind of fish is 2.5 inches, with a standard deviation of 0.2 inches. What is the probability that the average length of 100 randomly selected fishes is between 2.5 and 2.53 inches? Select one: a. 0.8413 b. 0.1587 c. 0.9332 d. 0.4332
If the length of one kind of fish is 2.5 inches, with a standard deviation of 0.2 inches. The probability that the average length of 100 randomly selected fishes is: d. 0.4332.
What is the probability?First step is to find the Standard Error using this formula
Standard Error = Standard Deviation / √(Sample Size)
Standard Error = 0.2 / √(100)
Standard Error = 0.2 / 10
Standard Error = 0.02 inches
We must determine the z-scores for both values using the following formula in order to determine the likelihood that the average length of 100 randomly chosen fish falls between 2.5 and 2.53 inches.
z = (x - μ) / σ
where:
x = value = 2.5 or 2.53 inches
μ = mean = 2.5 inches
σ = standard deviation =0.02 inches
2.5 inches:
z = (2.5 - 2.5) / 0.02
= 0 / 0.02
= 0
2.53 inches:
z = (2.53 - 2.5) / 0.02
= 0.03 / 0.02
= 1.5
Using a standard normal distribution table find the probabilities associated with these z-scores.
Probability that a z-score is less than or equal to 0 is 0.5,
Probability that a z-score is less than or equal to 1.5 is approximately 0.9332.
So,
Probability = 0.9332 - 0.5
Probability = 0.4332
Therefore the correct option is d. 0.4332.
Learn more about probability here:https://brainly.com/question/13604758
#SPJ1
A smooth and rapid flow of large volumes of goods or services through a system is best achieved with ______. Multiple choice question. product layouts process layouts fixed-position layouts
A smooth and rapid flow of large volumes of goods or services through a system is best achieved with "process layouts."Process layouts are utilized for making small lots or batches of goods, and they can deal with a wide range of product designs.
Products pass through several machines in a process layout, with each machine designed to complete a specific activity or operation. The product layout is an arrangement in which the products undergo a repetitive sequence of processing operations, and the facilities or departments are structured according to the product flow. Fixed-position layouts are used to construct large items like aircraft, ships, and construction projects, and they remain stationary while employees, equipment, and materials are brought to them.
Process layouts are best for processes that need flexibility and variability. It is most suitable when various products with various processing requirements are to be processed.
Therefore, the correct answer is the "process layouts."
To know more about process layouts visit:
https://brainly.com/question/30407436
#SPJ11
If the null space of a 7 x 6 matrix is 5-dimensional, find Rank A, Dim Row A, and Dim Col A. a. Rank A = 1, Dim Row A = 5, Dim Col A = 5 b. Rank A = 2, Dim Row A = 2, Dim Col A = 2 c. Rank A = 1, Dim Row A = 1, Dim Col A = 1 d. d. Rank A = 1, Dim Row A = 1, Dim Col A = 5
The rank-nullity theorem states that for any matrix A, the sum of the rank of A and the dimension of the null space of A is equal to the number of columns of A. The answer is (a) Dim Row A = 5, Dim Col A = 5.
In this case, we know that the null space of the 7 x 6 matrix is 5-dimensional. Therefore, we can use the rank-nullity theorem to solve for the rank of A.
Number of columns of A = 6
Dimension of null space of A = 5
Rank of A = Number of columns of A - Dimension of null space of A
Rank of A = 6 - 5
Rank of A = 1
So the answer is (a) Rank A = 1. To find the dimensions of the row space and column space, we can use the fact that the row space and column space have the same dimension as the rank of the matrix.
Dim Row A = Rank A = 1
Dim Col A = Rank A = 1
Learn more about rank-nullity theorem here:
https://brainly.com/question/31477084
#SPJ11
a car is rented for $50/day. gasoline costs $2/gallon, and the car gets 30 miles/gallon. what is the marginal cost per mile for a one-day, 200-mile trip?
So the marginal cost per mile for a one-day, 200-mile trip is $2/30 = $0.067 or approximately 6.7 cents per mile.
The cost of the car rental for one day is $50. The cost of gasoline for the 200-mile trip can be calculated as follows:
The car gets 30 miles per gallon, so it will use 200/30 = 6.67 gallons of gasoline for the trip.
The cost of 1 gallon of gasoline is $2, so the cost of 6.67 gallons is 6.67 x $2 = $13.34.
Therefore, the total cost of the trip is $50 + $13.34 = $63.34. The marginal cost per mile can be calculated by taking the derivative of the total cost with respect to the distance traveled:
d/dx ($50 + $2/30 x) = $2/30
To learn more about marginal cost visit:
brainly.com/question/7781429
#SPJ11
A ball is thrown directly upward. Its height h (in feet) after
t seconds is given by h(t)=5+80t−16t2.
Find the maximum height the ball reaches.
a) 95 ft.
b) 100 ft.
c) 105 ft.
d) 120 ft.
Answer:
c) 105 ft.
Step-by-step explanation:
Currently, the quadratic equation is in standard form, which is
[tex]f(x)=ax^2+bx+c[/tex]
If we rewrite h(t) as -16t^2 + 80t + 5, we see that -16 is the a value, 80 is the b value, and 5 is the c value.
When a quadratic is in standard form, we can find the x coordinate of the vertex (max or min) using the formula -b / 2a.
Then, we can plug this in to find the y-coordinate of the vertex to find the maximum value
-b / 2a = 80 / (2 * -16) = 80 / -32 = 5/2 (x-coordinate of max)
h (5/2) = -16 (5/2)^2 + 80(5/2) + 5 = 105 (y-coordinate of max)
Therefore, the maximum height the ball reaches is 105 ft.
The maximum height the ball reaches is (c) 105 ft.
To find the maximum height the ball reaches, we need to determine the vertex of the quadratic function h(t) = 5 + 80t - 16t². The vertex can be found using the formula t = -b/(2a), where a = -16 and b = 80. Plugging these values, we get t = -80/(2 × -16) = 2.5 seconds. Now, substitute this value of t into the height function to find the maximum height: h(2.5) = 5 + 80(2.5) - 16(2.5)² = 105 ft. Therefore, the correct answer is (c) 105 ft.
Learn more about vertex here:
https://brainly.com/question/15789254
#SPJ11
What are the coordinates of V' in (T <3, -2> · D5) (TUV) if T(-1, -1), U(-1, 2), and V (2, 1)?
The coordinates of V' in (T <3, -2> · D5) (TUV) if T(-1, -1), U(-1, 2), and V (2, 1) is <2, -3>.
Given that T(-1, -1), U(-1, 2), and V(2, 1) and we are asked to find the coordinates of V' in (T <3, -2> · D5) (TUV).
Solution:
Given that T(-1, -1), U(-1, 2), and V(2, 1)
As we know the formula of projection of a vector V on vector U is given by the formula,
Projection of V on U = [(V. U) / (U. U)] U
Let's calculate U vector as:
U = U - TU = (-1, 2) - (-1, -1)
U = (-1, 2) + (1, 1)
U = (0, 3)
Now let's calculate V'V' = (T <3, -2> · D5) (TUV)
V' = (-1, -1) <3, -2> · (2, 1) * (0, 3) + (-1, 2) <3, -2> · (2, 1) * (2, 1) + (2, 1) <3, -2> · (-1, -1)
V' = (-1, -1) <3 * 2 + (-2 * 1), 3 * 1 + (-2 * 2)> * (0, 3) + (-1, 2) <3 * 2 + (-2 * 1), 3 * 1 + (-2 * 2)> * (2, 1) + (2, 1) <3 * (-1) + (-2 * (-1)), 3 * (-1) + (-2 * (-1))>
V' = (-1, -1) <4, -3> * (0, 3) + (-1, 2) <4, -3> * (2, 1) + (2, 1) <1, -1>
V' = (-1, -1) <12, -9> + (-1, 2) <5, -6> + (2, 1) <1, -1>
V' = (-1, -1) <0, 3> + (-5, 6) + (2, 1) <-1, -1>
V' = <(-1*0) + (-1*-1) + (-1*-1), (-1*3) + (-1*1) + (-1*-1)>
V' = <2, -3>
Therefore the coordinates of V' in (T <3, -2> · D5) (TUV) if T(-1, -1), U(-1, 2), and V (2, 1) is <2, -3>.
Hence, the required answer is <2, -3>.
To know more about coordinates visit:
https://brainly.com/question/15300200
#SPJ11
Use strong induction to show that the square root of 18 is irrational. You must use strong induction to receive credit on this problem
Our initial assumption that the square root of n is rational must be false, and we can conclude that the square root of 18 is irrational.
To prove that the square root of 18 is irrational using strong induction, we first need to state and prove a lemma:
Lemma: If n is a composite integer, then n has a prime factor less than or equal to the square root of n.
Proof of Lemma: Let n be a composite integer, and let p be a prime divisor of n. If p is greater than the square root of n, then p*q > n for some integer q, which contradicts the assumption that p is a divisor of n. Therefore, p must be less than or equal to the square root of n.
Now we can prove that the square root of 18 is irrational:
Base Case: For n = 2, the square root of 18 is clearly irrational.
Inductive Hypothesis: Assume that for all k < n, the square root of k is irrational.
Inductive Step: We want to show that the square root of n is irrational. Suppose for the sake of contradiction that the square root of n is rational. Then we can write the square root of n as p/q, where p and q are integers with no common factors and q is not equal to 0. Squaring both sides, we get:
n = p^2 / q^2
Multiplying both sides by q^2, we get:
n*q^2 = p^2
This shows that n*q^2 is a perfect square, and since n is not a perfect square, q^2 must have a prime factorization that includes at least one prime factor raised to an odd power. Let r be the smallest prime factor of q. Then we can write:
q = r*m
where m is an integer. Substituting this into the previous equation, we get:
nr^2m^2 = p^2
Since r is a prime factor of q, it is also a prime factor of p^2. Therefore, r must be a prime factor of p. Let p = r*k, where k is an integer. Substituting this into the previous equation, we get:
nm^2r^2 = r^2*k^2
Dividing both sides by r^2, we get:
n*m^2 = k^2
This shows that k^2 is a multiple of n. By the lemma, n must have a prime factor less than or equal to the square root of n. Let s be this prime factor. Then s^2 is a factor of n, and since k^2 is a multiple of n, s^2 must also be a factor of k^2. This implies that s is also a factor of k, which contradicts the assumption that p and q have no common factors.
Learn more about rational at: brainly.com/question/15837135
#SPJ11
11. X = ____________ If MN = 2x + 1, XY = 8, and WZ = 3x – 3, find the value of ‘x’
The value of x include the following: D. 3.
What is an isosceles trapezoid?The base angles of an isosceles trapezoid are congruent and equal. This ultimately implies that, an isosceles trapezoid has base angles that are always equal in magnitude.
Additionally, the trapezoidal median line must be parallel to the bases and equal to one-half of the sum of the two (2) bases. In this context, we can logically write the following equation to model the bases of isosceles trapezoid WXYZ;
(XY + WZ)/2 = MN
XY + WZ = 2MN
8 + 3x - 3 = 2(2x + 1)
5 + 3x = 4x + 2
4x - 3x = 5 - 2
x = 3
Read more on isosceles trapezoid here: brainly.com/question/4758162
#SPJ4
Missing information:
The question is incomplete and the complete question is shown in the attached picture.
Liam is standing on a cliff that is 2km tall, he looks out towards the sea from the top of a cliff and notices two cruise liners on is 5km away at a diagonal and the other is 6. 8km away at a diagonal. What is the distance between the two cruise liners?
To find the distance between the two cruise liners, we can use the Pythagorean theorem. Let's assume Liam is standing at the vertex of a right triangle, with the cliff being the vertical side and the distances to the cruise liners being the diagonal sides.
Let's denote the distance between Liam and the first cruise liner as x, and the distance between Liam and the second cruise liner as y.
For the first cruise liner, we have a right triangle with one leg measuring 2 km (the height of the cliff) and the hypotenuse measuring 5 km. Using the Pythagorean theorem, we can calculate x:
x^2 + 2^2 = 5^2
x^2 + 4 = 25
x^2 = 21
x ≈ √21
Similarly, for the second cruise liner, we have a right triangle with one leg measuring 2 km and the hypotenuse measuring 6.8 km. Using the Pythagorean theorem, we can calculate y:
y^2 + 2^2 = 6.8^2
y^2 + 4 = 46.24
y^2 = 42.24
y ≈ √42.24
Now, to find the distance between the two cruise liners, we subtract the two distances:
Distance between the two cruise liners = y - x ≈ √42.24 - √21
Calculating the approximate values:
Distance between the two cruise liners ≈ 6.5 km
Therefore, the approximate distance between the two cruise liners is 6.5 km.
Learn more about Pythagorean theorem Visit : brainly.com/question/343682
#SPJ11
Work out the area of the triangle. Give your answer to 1 decimal place. 10cm 13cm and 105 degrees
The area of the triangle is 30.8 cm²
The triangle’s area may be determined using the given formula:
Area = 0.5 x base x height (in this instance, the base is 10 cm).Now we have to find the height. We may do it with the use of the formula: h = sinθ × b / 2
where h = height of the triangle
θ = the angle (in radians) opposite the height
b = base length
Using these equations, we may determine the height and then calculate the triangle's area. Here is the complete answer to the given question:
Given that, base = 10 cm, angle (opposite to height) = 105°, and a = 13 cm
We can calculate the height (h) using the formula: h = sin(105°) × 13 / 2
h = 6.15 cm
Now, using the formula to calculate the triangle's area:
Area = 0.5 × 10 × 6.15 = 30.75 cm²
Therefore, the area of the triangle is 30.8 cm² (rounded to one decimal place).
Know more about triangle here,
https://brainly.com/question/29083884
#SPJ11
Luke caught at least 2 fish every day last week. He believes that the probability he will catch 40 fish in the same location tomorrow is very unlikely. Which value could represent the probability Luke will catch 40 fish tomorrow?
A.
0. 20
B.
0. 50
C.
0. 95
D.
0. 3
Based on the given information, the value that could represent the probability Luke will catch 40 fish tomorrow is option D: 0.3.
Luke caught at least 2 fish every day last week, indicating that he consistently catches fish in the same location. However, the statement also mentions that Luke believes it is very unlikely for him to catch 40 fish in the same location tomorrow.
Since the probability of catching 40 fish is considered very unlikely, we can infer that the probability value should be relatively low. Among the given options, the value 0.3 (option D) best represents a low probability.
Option A (0.20) suggests a slightly higher probability, while option B (0.50) represents a probability that is not considered unlikely. Option C (0.95) indicates a high probability, which contradicts the statement that Luke believes it is very unlikely.
Therefore, option D (0.3) is the most suitable choice for representing the probability Luke will catch 40 fish tomorrow, considering the given information.
Learn more about probability here:
https://brainly.com/question/32117953
#SPJ11
One semicircle has a diameter of 12 cm and the other has a diameter of 20 cm.
Let's call the semicircle with diameter 12 cm as semicircle A and the semicircle with diameter 20 cm as semicircle B.What is a semicircle?A semicircle is a half circle that consists of 180 degrees. It is a geometrical figure that looks like a shape of a pizza when cut in half.What is a diameter?The diameter is a straight line that passes from one side of the circle to the other and goes through the center of the circle.
The diameter is twice as long as the radius.Let's find out the radius and circumference of both semicircles: Semircircle A:Since the diameter of semicircle A is 12 cm, therefore, the radius of semicircle A is:Radius = Diameter/2Radius = 12/2Radius = 6 cm To find the circumference of the semicircle A we need to know the formula of circumference of a semicircle:Circumference of Semicircle = 1/2 π d, where d is the diameter of the semicircle.Circumference of semicircle A = 1/2 π (12) Circumference of semicircle A = 18.85 cm Semircircle B:Since the diameter of semicircle B is 20 cm, therefore, the radius of semicircle B is:Radius = Diameter/2Radius = 20/2Radius = 10 cmTo find the circumference of the semicircle B we need to know the formula of circumference of a semicircle:Circumference of Semicircle = 1/2 π d, where d is the diameter of the semicircle.Circumference of semicircle B = 1/2 π (20)Circumference of semicircle B = 31.42 cmTherefore, the radius of semicircle A is 6 cm, the radius of semicircle B is 10 cm, the circumference of semicircle A is 18.85 cm, and the circumference of semicircle B is 31.42 cm.
To know more about circumference,visit:
https://brainly.com/question/28757341
#SPJ11
The circumference of a semicircle with diameter 20 cm is 31.42 cm.
The circumference of a semicircle with diameter 12 cm is 18.85 cm.
To find out the circumference of a semicircle with a diameter of 20 cm,
Circumference of a semicircle formula:πr + 2r = (π + 2)r
Where
π is the value of pi (approximately 3.14) and
r is the radius of the semicircle.
Circumference of semicircle with diameter 12 cm
The diameter of a semicircle with diameter 12 cm is 12 cm/2 = 6 cm.
The radius of a semicircle is half the diameter, so the radius of a semicircle with diameter 12 cm is 6 cm.
πr + 2r = (π + 2)r
π(6) + 2(6) = (3.14 + 2)(6)
= 18.85
The circumference of a semicircle with diameter 12 cm is 18.85 cm.
Circumference of semicircle with diameter 20 cm
The diameter of a semicircle with diameter 20 cm is 20 cm/2 = 10 cm.
The radius of a semicircle with a diameter of 20 cm is 10 cm.
πr + 2r = (π + 2)r
π(10) + 2(10) = (3.14 + 2)(10)
= 31.42
The circumference of a semicircle with diameter 20 cm is 31.42 cm.
To know more about diameter, visit:
https://brainly.com/question/32968193
#SPJ11