Use the image to answer the question. Which process enables the boy to see
over the wall?
A.diffraction
B.interference
C.reflection
D.refraction

Answers

Answer 1

HELLO

İ THİNK D

WHY D?

BCUESE SEN COK MALSİN ZAAA DAHA TÜRCE BİLMİYON MK


Related Questions

3. the separation of the rotational lines in the p and r branches of 127i 35cl is 0.2284 cm−1 . calculate the bondlength

Answers

The bond length of ^127I^35Cl is approximately 1.996 x 10⁻¹⁰ m.

How to find the bond length?

The rotational spectrum of a diatomic molecule is given by the expression:

ΔE = B(J+1)(J) - DJ²(J+1)²

where ΔE is the separation between rotational energy levels, J is the quantum number for the rotational energy, B is the rotational constant, and D is the centrifugal distortion constant. The p and r branches refer to different rotational transitions in the spectrum.

For the p branch, the quantum number changes by ΔJ = -1, while for the r branch, the quantum number changes by ΔJ = +1. The separation between the rotational lines in the p and r branches is given by:

ΔE = B(J+1)(J) - B(J-1)(J)(J-1) = 2B(J+1)

In this problem, we are given that the separation of the rotational lines in the p and r branches of ^127I^35Cl is 0.2284 cm⁻¹. We can use this value to determine the rotational constant B for the molecule:

ΔE = 2B(J+1)

0.2284 cm⁻¹  = 2B(J+1)

B = 0.1142 cm⁻¹ (J+1)V

To determine the bond length of the molecule, we can use the expression for the rotational constant B in terms of the moment of inertia I and the bond length r:

B = h/8π²cI = h/8π²cmr²

where h is Planck's constant, c is the speed of light, m is the reduced mass of the molecule, and r is the bond length. Rearranging this equation, we get:

r = √(h/8π²cmB)

Substituting the given values and solving for r, we get:

r = √[(6.626 x 10^-34 J·s)/(8π² x 3.00 x 10¹⁰ cm/s x 0.1142 cm⁻¹ (1+1))]

r ≈ 1.996 x 10⁻¹⁰ m

Therefore, the bond length of ^127I^35Cl is approximately 1.996 x 10⁻¹⁰ m.

Learn more about bond length

brainly.com/question/31625763

#SPJ11

For metal conductors, resistance varies directly with the length and inversely with the cross sectional area. The formal relation is R p, where P is the resistivity measured in 22. m. For copper wire the resistivity is 1.72x10-62.m. What is the resistance in Ohms of a 20.0 m long copper wire with cross-sectional radius of 4.57x10 m a. 330 b. 0.00656 c. 52.4 d. 100

Answers

The resistance of the copper wire is 0.00656 Ohms when it has a length of 20.0 m and a cross-sectional radius of 4.57x10^-6 m.

To calculate the resistance of a copper wire, we can use the formula R = (ρ * L) / A, where R is the resistance, ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area.Given that the resistivity of copper is ρ = 1.72x10^-8 Ω.m, the length of the wire is L = 20.0 m, and the cross-sectional radius is r = 4.57x10^-6 m, we can calculate the cross-sectional area using the formula A = π * r^2.Substituting the given values into the formulas, we have A = 3.14159 * (4.57x10^-6)^2 = 6.5802x10^-11 m^2.Finally, substituting the calculated values into the resistance formula, we get R = (1.72x10^-8 * 20.0) / 6.5802x10^-11 = 0.00656 Ω.Therefore, the resistance of the copper wire is approximately 0.00656 Ohms.

Learn more about copper wire here:

https://brainly.com/question/30050416

#SPJ11

Given an updated current learning rate, set the ResNet modules to this
current learning rate, and the classifiers/PPM module to 10x the current
lr.
Hint: You can loop over the dictionaries in the optimizer.param_groups
list, and set a new "lr" entry for each one. They will be in the same order
you added them above, so if the first N modules should have low learning
rate, and the next M modules should have a higher learning rate, this
should be easy modify in two loops.

Answers

To set the ResNet modules to the current learning rate and the classifiers/PPM module to 10x the current learning rate, you can loop over the dictionaries in the optimizer.param_groups list and set a new "lr" entry for each one. You can first set the ResNet modules to the current learning rate by looping over the first N dictionaries in the optimizer.param_groups list and setting the "lr" entry to the current learning rate.

The classifiers/PPM module to 10x the current learning rate by looping over the next M dictionaries in the optimizer.param_groups list and setting the "lr" entry to 10 times the current learning rate. By modifying the number of dictionaries you loop over, you can easily adjust the number of modules that have a low learning rate and those that have a higher learning rate. To update the learning rates for ResNet modules and classifiers/PPM modules, follow these steps:
1. Loop over the optimizer.param_groups list.
2. For the first N modules (ResNet), set the learning rate to the updated current learning rate.
3. For the next M modules (classifiers/PPM), set the learning rate to 10 times the updated current learning rate.

To loop over the optimizer.param_groups list, use a for loop and enumerate function. This allows you to easily access the index and parameter group. You can update the learning rate for each parameter group by simply setting a new "lr" entry. To achieve this, use the index and the specified learning rate values.
To know more about ResNet modules visit

https://brainly.com/question/30298626

#SPJ11

a mass m = 0.55 kg is at the end of a horizontal spring on a frictionless horizontal surface. the mass is oscillating with an amplitude a = 5.5 cm and a frequency f = 0.95 hz

Answers

The value of spring constant k =19.57N/m. The maximum speed of the mass is 0.33 m/s.

we can use the equation for the period of a mass-spring system:

T = 2π√(m/k)

where T is the period of the oscillation, m is the mass of the object attached to the spring, and k is the spring constant.

To find the spring constant k, we can use the equation for the frequency of a mass-spring system:

f = 1/(2π)√(k/m)

where f is the frequency of the oscillation.

Rearranging this equation, we get:

k = 4π²mf²

Plugging in the values given in the problem, we get:

k = 4π²(0.55 kg)(0.95 Hz)² = 19.57 N/m

Now that we have the spring constant, we can use the amplitude of the oscillation to find the maximum speed of the mass:

v_max = aω

where a is the amplitude of the oscillation and ω is the angular frequency of the oscillation, given by:

ω = 2πf

Plugging in the values given in the problem, we get:

ω = 2π(0.95 Hz) = 5.97 rad/s

v_max = (0.055 m)(5.97 rad/s) = 0.33 m/s

Therefore, the maximum speed of the mass is 0.33 m/s.

Learn more about spring and oscillation here :

brainly.com/question/26713553

#SPJ4

a centrifuge accelerates uniformly from rest to 14000 rpm in 225 s . Through how many revolutions did it turn in this time?

Answers

The centrifuge made approximately 26,372 revolutions during its acceleration.

To calculate the number of revolutions a centrifuge made during its acceleration, we'll use these terms:

initial velocity (Vi), final velocity (Vf), time (t), angular acceleration (α), and number of revolutions (n).

Given: Vi = 0 (rest), Vf = 14,000 rpm, t = 225 s.

First, we need to convert Vf to radians per second (rad/s):

Vf = (14,000 rpm * 2π rad/rev) / 60 s/min ≈ 1,466.07 rad/s.

Now, we can calculate angular acceleration (α) using the formula:

α = (Vf - Vi) / t

α ≈ (1,466.07 rad/s - 0 rad/s) / 225 s ≈ 6.516 rad/s².

Next, we can find the angular displacement (θ) using the formula:

θ = Vi*t + 0.5*α*t² θ ≈ 0 + 0.5 * 6.516 rad/s² * (225 s)² ≈ 165,607.88 rad.

Finally, we can determine the number of revolutions (n) by dividing θ by 2π:

n ≈ 165,607.88 rad / 2π ≈ 26,372 revolutions.

Learn more about centrifuge at

https://brainly.com/question/12954017

#SPJ11

The earth's magnetic field strength is 5.0x10^-5 T. How fast would you have to drive your car to create a 4.0Vmotional emf along your 1.0m-long radio antenna? Assume that the motion of the antenna is perpendicular to\vec {B}

Answers

The car would have to be driven at a speed of 8.0x[tex]10^4[/tex] m/s to create a 4.0 V motional emf along the 1.0 m-long radio antenna perpendicular to the earth's magnetic field.

To calculate the speed required to create a 4.0 V motional emf along a 1.0 m-long radio antenna perpendicular to the earth's magnetic field, we can use the equation:

emf = Blv

Where emf is the motional emf, B is the magnetic field strength, l is the length of the antenna, and v is the velocity of the antenna.

Substituting the given values, we have:

4.0 V = (5.0x[tex]10^-^5[/tex] T)(1.0 m)(v)

Solving for v, we get:

v = 8.0x[tex]10^4[/tex]m/s

Therefore, the car would have to be driven at a speed of 8.0x[tex]10^4[/tex] m/s to create a 4.0 V motional emf along the 1.0 m-long radio antenna perpendicular to the earth's magnetic field. This speed is much greater than the speed of sound and is impossible to achieve with current technology.

To know more about  magnetic field refer here :

https://brainly.com/question/7802337

#SPJ11

the equilibrium temperature is the temperature at which [delta]h = - [delta]s the equilibrium temperature is the temperature at which [delta]h = - [delta]s true false

Answers

The given statement "the equilibrium temperature is the temperature at which ΔH = -ΔS the equilibrium temperature is the temperature at which ΔH = -ΔS" is false. The equilibrium temperature is the temperature at which ΔH = TΔS, not -ΔS.

The equilibrium temperature is the temperature at which a system reaches a state of balance between the enthalpy change (ΔH) and the entropy change (ΔS).

According to the Gibbs free energy equation (ΔG = ΔH - TΔS), at equilibrium, ΔG equals zero.

Therefore, the correct relationship at equilibrium is ΔH = TΔS, not -ΔS as stated in the question.

When this condition is met, the system is at equilibrium, and there is no net change in the enthalpy and entropy of the system.

Thus, the correct choice is false.

For more such questions on temperature, click on:

https://brainly.com/question/27944554

#SPJ11

This statement is true. The Gibbs free energy change is related to the enthalpy change (ΔH) and the entropy change (ΔS) by the equation ΔG = ΔH - TΔS, where T is the temperature. At equilibrium, ΔG is zero, which means that ΔH = TΔS.

Therefore, the equilibrium temperature is the temperature at which ΔH = -TΔS, or in other words, the temperature at which the enthalpy change and the entropy change have equal and opposite magnitudes. This equation is a consequence of the second law of thermodynamics, which states that the entropy of the universe always increases for any spontaneous process.

Knowing the equilibrium temperature is important because it provides information about the direction and extent of a chemical reaction. If the temperature is above the equilibrium temperature, the reaction will proceed in the reverse direction, while if it is below the equilibrium temperature, the reaction will proceed in the forward direction.

Learn more about Gibbs free energy here:

https://brainly.com/question/20358734

#SPJ11

A single isolated, large conducting plate has a charge per unit area σ on its surface. Because the plate is a conductor, the electric field at its surface is perpendicular to the surface and has magnitude E = σ/Eo 5, The field from a large, uniformly charged sheet with charge per unit area σ has magnitude E = σ/2ε。. why is there a difference? Regard the charge distribution on the conducting plate as two sheets of charge (one on each surface), each with charge per unit area σ. Find the electric field inside and outside the plate.

Answers

The difference in the electric field between the isolated, large conducting plate and a uniformly charged

sheet with the same charge per unit area arises due to the different nature of the charge distribution.

In the case of the isolated conducting plate, the charge resides only on the surfaces of the plate.

Since the plate is a conductor, the charges redistribute themselves such that the electric field inside the conductor is zero.

This means that the electric field inside the plate is zero regardless of its position.

Therefore, the electric field inside and outside the plate is the same and equal to zero.

On the other hand, for a uniformly charged sheet, the charge is spread uniformly across the entire sheet.

The electric field above or below the sheet, at a distance from the surface, can be calculated using Gauss's law.

By considering a Gaussian surface above or below the sheet, perpendicular to the surface,

we find that the electric field magnitude is given by E = σ/2ε₀, where σ is the charge per unit area on the sheet, and ε₀ is the permittivity of free space.

In summary, the difference in the electric field arises due to the different charge distributions.

The isolated conducting plate has zero electric field inside and outside, while the uniformly charged sheet has a non-zero electric field above or below the sheet.

To know more about electric field refer here

https://brainly.com/question/11482745#

#SPJ11

ow much energy can be stored in a spring with k = 470 n/m if the maximum possible stretch is 18.0 cm ?

Answers

A maximum amount of 7.59 J energy can be stored in a spring with k = 470 n/m if the maximum possible stretch is 18.0 cm.

To calculate the maximum amount of energy that can be stored in a spring with a spring constant (k) of 470 N/m and a maximum possible stretch of 18.0 cm, we can use the formula for potential energy stored in a spring, which is given by:
PE = (1/2) kx^2
where PE is the potential energy stored in the spring, k is the spring constant, and x is the displacement from the equilibrium position (i.e., the stretch of the spring).
In this case, the maximum stretch is 18.0 cm, which is equivalent to 0.18 m. Therefore, we can calculate the maximum potential energy stored in the spring as:
PE = (1/2) * 470 N/m * (0.18 m)^2
PE = 7.59 J
So, the maximum amount of energy that can be stored in the spring is 7.59 J.

You can learn more about energy at: https://brainly.com/question/8630757

#SPJ11

An object moves in a circle of radius R at constant speed with a period T. If you want to change only the period in order to cut the object's acceleration in half, the new period should be A) T/2. B) TN2. C) 1/4 D) 4T E) TV2.

Answers

The new period, T_new, should be T * sqrt(0.5), which corresponds to option E) TV2.

An object moving in a circle of radius R at constant speed with a period T, let's first understand the centripetal acceleration formula: a = v^2 / R, where v is the tangential velocity. Since v = 2πR/T, we can substitute this into the acceleration formula, giving us a = (4π^2R) / T^2.

Now, you want to cut the object's acceleration in half. Let's denote the new period as T_new. The new acceleration, a_new, will be 0.5 * a. So, 0.5 * ((4π^2R) / T^2) = (4π^2R) / T_new^2.

To solve for T_new, divide both sides by (2πR), giving us:

0.5 * (T^2) = T_new^2.

Now, take the square root of both sides:

T_new = sqrt(0.5 * T^2) = T * sqrt(0.5).

Learn more about tangential velocity

brainly.com/question/28738284

#SPJ11

if the voltage applied to a parallel plate capacitor is doubled and no other changes are made, what happens the capacitance?

Answers

The capacitance of a parallel plate capacitor is defined as the ratio of the charge stored on the capacitor plates to the voltage applied between them. If the voltage applied to a parallel plate capacitor is doubled and no other changes are made, the capacitance remains constant.

This can be explained using the equation C = Q/V, where C is the capacitance, Q is the charge stored on the plates, and V is the voltage applied between the plates.

Since the distance between the plates and the area of the plates remain constant, the charge stored on the plates will increase proportionally to the increase in voltage. However, the capacitance will not change as it is solely dependent on the geometry of the plates and the distance between them. Therefore, if the voltage applied to a parallel plate capacitor is doubled and no other changes are made, the capacitance remains constant.

It is important to note that increasing the voltage applied to a capacitor beyond its rated voltage can result in the breakdown of the dielectric material between the plates, leading to a decrease in capacitance and potentially damaging the capacitor. Therefore, it is important to operate capacitors within their rated voltage range to ensure their proper function and longevity.

Learn more about capacitance  here:-

https://brainly.com/question/31871398

#SPJ11

true/false. art-ranking activity: myogram of a twitch contraction

Answers

The given statement " art-ranking activity: myogram of a twitch contraction" is false because myogram is a recording of the electrical activity produced by skeletal muscle fibers during contraction.

A myogram is a recording of the electrical activity produced by skeletal muscle fibers during contraction. The myogram of a twitch contraction shows the sequence of events that occur during a single muscle contraction, including the latent period, contraction phase, and relaxation phase.

In contrast, an art-ranking activity involves the evaluation and ranking of artistic works based on subjective criteria such as aesthetic appeal, creativity, and originality. It is not related to the measurement of physiological parameters such as muscle activity.

Therefore, the statement "art-ranking activity: myogram of a twitch contraction" is false, as these two concepts are unrelated.

To learn more about myogram here

https://brainly.com/question/27961573

#SPJ4

what is the tension t in the rope if the bucket's acceleration is half the acceleration of free fall?

Answers

The tension in the rope is (3/2) times the weight of the bucket (mg) if the bucket's acceleration is half the acceleration of free fall

We can use Newton's second law of motion, F=ma, to determine the tension (T) in the rope. When the bucket is accelerating with half the acceleration of free fall, we have:

a = 1/2 g

where g is the acceleration due to gravity (approximately 9.81 m/s^2).

Let's assume the mass of the bucket is m. The weight of the bucket (the force due to gravity) is given by:

Fg = mg

The tension in the rope (the force pulling the bucket upward) is given by:

T = ma + mg

Substituting the value of a, we get:

T = (1/2)mg + mg

Simplifying the expression, we get:

T = (3/2)mg

Therefore, the tension in the rope is (3/2) times the weight of the bucket (mg).

To learn more about tension  refer here:

https://brainly.com/question/15880959#

#SPJ11

An electromagnetic wave with a frequency of 5.50×1014 hz propagates with a speed of 2.13×108 m/s in a certain piece of glass.
a. Find the wavelength of the wave in the glass.
b. Find the wavelength of a wave of the same frequency propagating in air.
c. Find the index of refraction of the glass for an electromagnetic wave with this frequency.
d. Find the dielectric constant for glass at this frequency, assuming that the relative permeability is unity.

Answers

An electromagnetic wave with a frequency of 5.50×1014 hz propagates with a speed of 2.13×108 m/s in a certain piece of glass.

To find the wavelength of the wave in the glass.

a. The wavelength of the wave in the glass can be found using the formula λ = c/f, where λ is the wavelength, c is the speed of light in the medium (in this case, glass), and f is the frequency of the wave. Plugging in the given values, we get:

λ = 2.13×10^8 m/s / 5.50×10^14 Hz
λ = 0.387 μm (or 387 nm)

b. To find the wavelength of a wave of the same frequency propagating in air, we can use the same formula as above, but with the speed of light in air (which is approximately 3.00×10^8 m/s):

λ = 3.00×10^8 m/s / 5.50×10^14 Hz
λ = 0.545 μm (or 545 nm)

c. The index of refraction (n) of the glass for an electromagnetic wave with this frequency can be found using the formula n = c/v, where c is the speed of light in a vacuum (3.00×10^8 m/s) and v is the speed of light in the medium (in this case, glass). Plugging in the given values, we get:

n = 3.00×10^8 m/s / 2.13×10^8 m/s
n = 1.41

d. The dielectric constant (εr) for glass at this frequency can be found using the formula εr = n^2, where n is the index of refraction. Plugging in the value of n that we found in part c, we get:

εr = (1.41)^2
εr = 1.99 (or approximately 2.00)

For more question on frequency

https://brainly.com/question/254161

#SPJ11

The dielectric constant for glass at this frequency is approximately 1.98. To find the dielectric constant for glass at a frequency of 5.50×1014 hz, we need to use the formula ε = c^2/(μrν^2).

where ε is the dielectric constant, c is the speed of light in vacuum, μr is the relative permeability (which is assumed to be unity), and ν is the frequency of the electromagnetic wave in the glass. We are given that the speed of the wave in the glass is 2.13×108 m/s, so we can substitute that value for c, and the given frequency for ν. Plugging in the values and solving for ε, we get ε = 7.92. This means that the glass has a dielectric constant of 7.92 at a frequency of 5.50×1014 hz, which indicates how much the glass affects the electric field of the electromagnetic wave passing through it.

To learn more about dielectric constant click here:brainly.com/question/13265076

#SPJ11

if across the three elements we apply an ac voltage of 1 v of frequency of 1000 hz and given that r=100ohm l=8.0*10^-3 and c =1.0 *10^ -6f , what is the reasonce frewuency

Answers

Answer:

The three elements we apply an ac voltage of 1 v of frequency of 1000 hz and given that r=100ohm l=8.0*10^-3 and c =1.0 *10^ -6f  the resonance frequency of the circuit is 1591 Hz.

Explanation:

The resonance frequency of an RLC circuit can be calculated using the formula:

f_res = 1 / (2 * pi * sqrt(L * C))

where f_res is the resonance frequency, L is the inductance, and C is the capacitance.

Plugging in the given values, we get:

f_res = 1 / (2 * pi * sqrt(8.0*10^-3 * 1.0*10^-6))

f_res = 1591 Hz (rounded to three significant figures)

Therefore, the resonance frequency of the circuit is 1591 Hz.

To learn more about resonance frequency refer here:

https://brainly.com/question/13040523#

#SPJ11

in the human physiology lab, the dynamometer was used to measure __________.

Answers

In the human physiology lab, the dynamometer was used to measure muscle strength and hand grip strength. The dynamometer is a device that measures the amount of force applied by a muscle or group of muscles during a specific movement or activity. Muscle strength is an important indicator of overall health and fitness, and it can be used to assess changes in muscle function due to aging, injury, or disease.



In the lab, participants were asked to grip the dynamometer with their dominant hand and squeeze as hard as they could for a specific amount of time. The device then measured the amount of force exerted by the muscles in the hand and wrist. This information can be used to evaluate changes in muscle strength over time, as well as to compare muscle strength between different individuals or groups.

In addition to measuring hand grip strength, the dynamometer can also be used to assess muscle strength in other parts of the body, such as the legs, arms, and back. By measuring muscle strength in different areas of the body, researchers can gain a more comprehensive understanding of an individual's overall muscle function and physical capabilities.

Learn more about dynamometer here:-

https://brainly.com/question/31765627

#SPJ11

Compare the measurements for objects using the 5N Spring Scale and 10N Spring Scale and write a general statement on when it is more beneficial to use a 5N scale rather than a 10N scale (if you have the 1N spring scale, substitute 10N with 1N in the question) Answer with complete sentences

Answers

The key difference between using a 5N Spring Scale and a 10N Spring Scale lies in their measurement range and sensitivity.

The 5N scale is more beneficial for measuring smaller objects with lower force requirements, while the 10N scale is better suited for objects that require greater force to measure.
A 5N Spring Scale can measure objects with a maximum force of 5 Newtons, providing more accurate readings for objects that fall within this range. On the other hand, a 10N Spring Scale is designed to measure objects with a force of up to 10 Newtons. When measuring objects with lower force requirements, using a 5N scale would result in more precise and accurate measurements, as it is specifically calibrated for smaller force values.

In summary, the choice between a 5N and a 10N Spring Scale depends on the force required to measure the objects in question. For objects with lower force requirements, a 5N Spring Scale would be more beneficial, providing more accurate and precise measurements compared to the 10N scale.

To know more about range and sensitivity, click here

https://brainly.com/question/19203549

#SPJ11

i) you want to take a 100 mile trip by car. the car has a constant failure rate of (f) = 10-4 per mile travelled. what is the probability that the destination is reached without the car breaking down?

Answers

The probability that the destination is reached without the car breaking down is 0.9901, or 99.01%.

To calculate the probability that the car reaches its destination without breaking down, we need to use the exponential distribution formula.

The failure rate of the car is given as f = 10-4 per mile travelled, which means that the mean time to failure is 1/f = 10,000 miles.

Using this, we can calculate the probability of the car not breaking down over 100 miles as P(X > 100) = e⁽⁻¹⁰⁰/¹⁰·⁰⁰⁰) = 0.9901.

This assumes that the car's failure rate is constant and independent of previous failures, and that the car is in good condition at the start of the trip.

Learn more about probability at

https://brainly.com/question/14210034

#SPJ11

A 1200-turn coil of wire that is 2.3 cm in diameter is in a magnetic field that drops from 0.12 T to 0 in 9.0 ms. The axis of the coil is parallel to the field.
What is the emf of the coil?

Answers

Emf of the coil is approximately -6.56 V. The negative sign indicates that the induced emf is opposing the change in magnetic field, as per Lenz's Law.

To calculate the emf of the coil, we can use Faraday's Law of Electromagnetic Induction:

emf = -N * (ΔB/Δt) * A

where:
- N is the number of turns in the coil (1200 turns)
- ΔB is the change in magnetic field (0.12 T - 0 T = 0.12 T)
- Δt is the time over which the change occurs (9.0 ms = 0.009 s)
- A is the area of the coil

Since the coil is circular, the area can be calculated using the formula:

A = π * (d/2)^2

where d is the diameter of the coil (2.3 cm = 0.023 m).

Now, we can plug in the values:

A = π * (0.023/2)^2 = 0.000415 m^2

emf = -1200 * (0.12 T / 0.009 s) * 0.000415 m^2
emf ≈ -6.56 V
To know  more about Faraday's Law of Electromagnetic Induction, click here;

https://brainly.com/question/13369951

#SPJ11

Downward forces of 45.0 N and 15.0 N, respectively, are required to keep a plastic block totally immersed in water and in oil. If the volume of the block is 8000 cm³, find the density of the oil. Ans. 620 kg/m³​

Answers

The density of the oil is 620 kg/m³.

Density is a measure of how much mass is contained in a given volume of a substance. It is defined as the mass of a substance per unit volume. The formula for density is:

Density = Mass / Volume

The units of density are typically kilograms per cubic meter (kg/m³) in the SI system, or grams per cubic centimeter (g/cm³) in the CGS system. Density is an important physical property of a substance, as it can be used to identify and distinguish different materials. It also plays a role in many scientific and engineering applications, such as calculating the buoyant force acting on an object submerged in a fluid, or determining the strength and durability of a material.

The buoyant force acting on an object submerged in a fluid is equal to the weight of the fluid displaced by the object. This can be expressed mathematically as:

Buoyant force = Weight of fluid displaced

We can use this relationship to solve the problem. Let's start by finding the weight of the plastic block. We know that the downward force required to keep the block fully immersed in water is 45.0 N. This is equal to the weight of the block plus the weight of the water displaced by the block. Since the block is fully immersed in water, the volume of water displaced is equal to the volume of the block, which is 8000 cm³. We can use the density of water, which is 1000 kg/m³, to find the weight of the water displaced:

Weight of water displaced = density of water × volume of water displaced × gravitational acceleration

= 1000 kg/m³ × 0.008 m³ × 9.81 m/s²

= 78.48 N

Therefore, the weight of the plastic block is:

Weight of plastic block = 45.0 N - 78.48 N

= -33.48 N

The negative sign indicates that the buoyant force acting on the block in water is greater than the weight of the block. This makes sense since the block is floating in water.

Now let's find the weight of the oil displaced by the block. We know that the downward force required to keep the block fully immersed in oil is 15.0 N. This is equal to the weight of the block plus the weight of the oil displaced by the block. Again, the volume of oil displaced is equal to the volume of the block, which is 8000 cm³. Let's denote the density of the oil as ρ. Then we can write:

Weight of oil displaced = ρ × volume of oil displaced × gravitational acceleration

= ρ × 0.008 m³ × 9.81 m/s²

Therefore, the weight of the plastic block is:

Weight of plastic block = 15.0 N - ρ × 0.008 m³ × 9.81 m/s²

Since we already know that the weight of the plastic block is -33.48 N, we can write:

-33.48 N = 15.0 N - ρ × 0.008 m³ × 9.81 m/s²

Solving for ρ, we get:

ρ = (15.0 N + 33.48 N) / (0.008 m³ × 9.81 m/s²)

= 620 kg/m³

Therefore, the density of the oil is 620 kg/m³.

To learn more about  Archimedes' Principle  click:

brainly.com/question/787619

#SPJ1

A car with 42.0 cm radius tires accelerates uniformly from rest to 30.0 m/s in 4.50 s. Assuming no slipping of the tires occurs, how many revolutions do the car tires make during the acceleration? 4.51 rev 51.2 rev O 28.4 rev 0 25.6 rev

Answers

To solve this problem, we need to use kinematic equations to find the angular acceleration of the tires, and then use that to calculate the number of revolutions they make during the acceleration. The number of revolutions are 51.2 revolutions.

First, we need to find the linear acceleration of the car. We can use the formula: [tex]a = (v_f - v_i) / t[/tex] where a is the linear acceleration, is the final velocity, v is the initial velocity (which is zero in this case), and t is the time it takes to reach the final velocity.

Plugging in the given values, we get: a = (30.0 m/s - 0) / 4.50 s a = 6.67 [tex]m/s^2.[/tex] Next, we can use the formula for linear acceleration in terms of angular acceleration and radius: a = αr

where α is the angular acceleration and r is the radius of the tire. Solving for α, we get: α = a / r [tex]α = 6.67 m/s^2 / 0.42 mα = 15.8 rad/s^2[/tex]

Finally, we can use the kinematic equation for angular displacement with constant angular acceleration: [tex]θ = ω_i t + (1/2)αt^2[/tex]

where θ is the angular displacement is the initial angular velocity (which is zero in this case), and t is the time. We want to find the number of revolutions, so we can convert the angular displacement to revolutions by dividing by 2π radians:

rev = θ / (2π), Plugging in the given values, we get:[tex]θ = (1/2)αt^2θ = (1/2)(15.8 rad/s^2)(4.50 s)^2θ = 356 radrev = 356 rad / (2π rad/rev)[/tex]rev ≈ 56.6 rev

Therefore, the car tires make approximately 56.6 revolutions during the acceleration. Since the answer choices are given in whole numbers of revolutions, we can round down to the nearest integer to get 56 revolutions, which is closest to the given answer of 51.2 revolutions.

Know more about angular acceleration here:

https://brainly.com/question/29428475

#SPJ11

You add 50g of ice cubes to 125g of water that is initially at20oC in a calorimeter of negligible heat capacity. When the system has reached equilibrium, how much of the iceremains? (specific heat capacity of ice is c=2.05 kJ/kgK, that ofwater is c=4.18 kJ/kgK, and the latent heat of fusion for ice towater is L=335.5 kJ/kg)

Answers

To solve this problem, we need to consider the heat transfer that occurs when the ice melts and the resulting water cools down to the final temperature of the system  all 50 g of the ice have melted.

Therefore, the final temperature of the system is 4.4°C. At this temperature, the remaining ice will have melted completely. The mass of the water after the ice The final temperature of the system is 4.4°C, as calculated in the previous solution.The mass of the final solution is the sum of the initial mass of the water and the mass of the ice, which is 125 g + 50 g = 175 g.

To know more about mass visit :

https://brainly.com/question/19694949

#SPJ11

three disks are concentrically attached to one another, and four rods of negligible mass are attached to the outer disk. identical objects of mass mo can be attached to the rods, and their positions on the rods can be adjusted. the disks, rods, and objects form a system that freely rotates around a central axis that is perpendicular to the plane of the page. the objects are initially a distance d away from the axis of rotation. a constant force f0 is applied tangent to the second disk, as shown in the figure. how can the system be changed so that the change in angular momentum of the system per unit of time is increased?

Answers

To increase the change in angular momentum of the system per unit of time, we need to apply a torque to the system. A torque is a force that tends to rotate an object about an axis, and it can be expressed as a vector quantity.

One way to increase the torque on the system is to move the objects further from the axis of rotation. This will increase the distance between the force applied to the second disk and the axis of rotation, which will result in a larger torque on the system. Another way to increase the torque on the system is to apply a force perpendicular to the plane of the disk, rather than a force tangent to the disk.

This will cause the disk to rotate about its own axis, which will result in a larger torque on the system. The system can be changed so that the change in angular momentum of the system per unit of time is increased by moving the objects further from the axis of rotation and applying a force perpendicular to the plane of the disk.  

Learn more about angular momentum Visit: brainly.com/question/30338110

#SPJ4

by what factor does the nucleon number of a nucleus have to increase in order for the nuclear radius to increase by a factor of 2?

Answers

To answer your question, the nuclear radius (R) is proportional to the cube root of the nucleon number (A) according to the empirical formula R = R₀A^(1/3), where R₀ is a constant.

If the nuclear radius increases by a factor of 2, then the new radius is 2R = R₀(A')^(1/3), where A' is the new nucleon number.

Dividing the equations, we get 2 = (A'/A)^(1/3).

Cubing both sides, we find that the nucleon number has to increase by a factor of 8 (2^3) for the nuclear radius to increase by a factor of 2.

Learn more about equation at

https://brainly.com/question/3594594

#SPJ11

Linear supersonic theory predicts that the curve of wave drag versus Mach number has a minimum point at a certain value of Mach number greater than 1. A. Calculate this value of Mach number B. Does it make physical sense for the wave drag to have a minimum value at some supersonic value of Mach number above 1? Explain. What does this say about the validity of linear theory for certain Mach number ranges?

Answers

A. The Mach number at which wave drag is minimum can be calculated using the formula:

M_min = sqrt(1 + (gamma-1)/(2*Cd0*AR*e*gamma))

where gamma is the specific heat ratio, Cd0 is the zero-lift drag coefficient, AR is the aspect ratio of the wing, and e is the Oswald efficiency factor.

B. It makes physical sense for wave drag to have a minimum value at some supersonic value of Mach number above 1 because at subsonic speeds, wave drag is caused by the formation of shock waves at the leading and trailing edges of the wing, which increase drag.

However, at supersonic speeds, the shock waves move away from the aircraft, reducing drag.

Therefore, there is a Mach number at which the reduction in wave drag due to the movement of the shock waves away from the aircraft outweighs the increase in drag due to the increase in pressure drag and skin friction drag, resulting in a minimum value of wave drag.

This suggests that the linear supersonic theory is valid for certain Mach number ranges, where the assumptions made in the theory are valid. However, as the Mach number increases.

The assumptions of the linear theory become less valid, and the actual behavior of the flow may deviate significantly from the predictions of the theory.

Therefore, for higher Mach numbers, other methods such as computational fluid dynamics (CFD) must be used to accurately predict the behavior of the flow.

To know more about Mach number click here:

https://brainly.com/question/14726043#

#SPJ11

which compressor has a piston that is driven up and down in the cylinder by a connecting rod and crankshaft?

Answers

A reciprocating compressor has a piston that is driven up and down in the cylinder by a connecting rod and crankshaft.

What compressor uses a piston and crankshaft?

A reciprocating compressor is the type of compressor that has a piston driven up and down in the cylinder by a connecting rod and crankshaft. This type of compressor uses a back-and-forth motion of the piston to compress the gas or air within the cylinder.

As the piston moves downward, it creates a vacuum, drawing in the gas or air. Then, as the piston moves upward, it compresses the gas or air, increasing its pressure.

The connecting rod connects the piston to the crankshaft, which converts the linear motion of the piston into rotary motion. The crankshaft is responsible for driving the piston up and down in a reciprocating motion.

This mechanical arrangement allows the reciprocating compressor to efficiently compress gases or air for various applications, such as in refrigeration systems, air compressors, and automotive engines.

Reciprocating compressors are known for their high efficiency and ability to generate high pressures.

They are commonly used in applications that require intermittent or varying compression loads. However, they can be noisy and require regular maintenance due to the moving parts involved in the piston-crankshaft mechanism.

Learn more about compressor

brainly.com/question/30656501

#SPJ11

pl q1. the light passing through the grating slits seems to be creating patterns of bright and dark fringes. in terms of light in the real world, what do the fringes mean?

Answers

The patterns of bright and dark fringes created by the light passing through the grating slits are known as interference patterns. These patterns are a result of the wave nature of light, where the light waves from each slit interfere with each other as they pass through the grating.

The bright fringes, also known as maxima, occur where the light waves from each slit reinforce each other, resulting in a bright spot. On the other hand, the dark fringes, also known as minima, occur where the light waves from each slit cancel each other out, resulting in a dark spot. In terms of light in the real world, the fringes indicate the constructive and destructive interference of light waves. This phenomenon can be observed in various natural phenomena, such as soap bubbles, oil slicks, and even the colors of a peacock's feathers.

Furthermore, interference patterns are used in various scientific applications, such as diffraction gratings, which are used in spectroscopy to analyze the properties of light and other electromagnetic waves. Overall, the patterns of bright and dark fringes created by the light passing through the grating slits provide valuable insights into the wave nature of light and its interaction with matter.

To know more about dark fringes visit:-

https://brainly.com/question/31315270

#SPJ11

Sketch the magnetic field dependent and temperature dependent magnetization
characteristics of a ferromagnet, antiferromagnet, paramagnet, and diamagnet,
respectively

Answers

Magnetic materials can be categorized into four main types: ferromagnetic, antiferromagnetic, paramagnetic, and diamagnetic. Each type of material has different magnetic properties that are influenced by external factors such as temperature and magnetic field.

Here is the sketch of the magnetic field-dependent and temperature-dependent magnetization characteristics of each type of magnetic material:

What are Ferromagentic materials?

Ferromagnet:

Ferromagnetic materials are strongly magnetic and have a permanent magnetic moment even in the absence of an external magnetic field. The magnetization of a ferromagnet increases with an increase in the external magnetic field until it reaches its saturation point. The saturation magnetization value is material-dependent and remains constant above this point.

Temperature affects ferromagnetic materials by altering their magnetic properties. When heated, the thermal energy causes a randomization of the magnetic moments, which decreases the overall magnetization of the material. As the temperature increases, the magnetic moment eventually disappears at the Curie temperature (Tc).

Antiferromagnet:

Antiferromagnetic materials have magnetic moments that cancel each other out and the net magnetization of the material is zero. When an external magnetic field is applied, the magnetic moments align in the direction of the field, but in equal and opposite directions, resulting in no net magnetization. The temperature dependence of antiferromagnetic materials is similar to that of ferromagnetic materials. However, instead of a Curie temperature, antiferromagnets have a Néel temperature (TN), above which they lose their magnetic ordering.

Paramagnet:

Paramagnetic materials have magnetic moments that are randomly oriented in the absence of an external magnetic field, and the net magnetization is zero. When an external magnetic field is applied, the magnetic moments align in the direction of the field, resulting in a net magnetization. Unlike ferromagnetic and antiferromagnetic materials, paramagnetic materials do not have a saturation point. The magnetization of a paramagnet increases linearly with an increase in the external magnetic field. Temperature affects paramagnetic materials by increasing the random motion of the magnetic moments, which decreases the overall magnetization of the material.

Diamagnet:

Diamagnetic materials have no permanent magnetic moment and do not retain any magnetization in the absence of an external magnetic field. When an external magnetic field is applied, diamagnetic materials develop a magnetic moment in the opposite direction of the applied field. The magnetization of a diamagnet is small and is independent of the magnetic field strength. Temperature affects diamagnetic materials in a similar way to paramagnetic materials, but the effect is much weaker.

Learn more about Magnets

brainly.com/question/13026686

#SPJ11

A raft is 3.7 m wide and 6.1 m long. When a horse is loaded onto the raft, it sinks 3.7 cm deeper into the water.
What is the weight of the horse? (in kN)

Answers

If the raft is 3.7m wide and 6.1m long and sinks 3.7cm deeper into the water when a horse is loaded will be 0.084 kN.

To calculate the weight of the horse, we can use Archimedes' principle, which states that the buoyant force on an object submerged in a fluid is equal to the weight of the displaced fluid.

Assuming the density of water is 1000 kg/[tex]m^3[/tex], the volume of water displaced by the raft and the horse can be calculated as follows:

Volume of water displaced = length x width x height = 6.1 m x 3.7 m x 0.037 m = 0.085 [tex]m^3[/tex]

The weight of the displaced water is then:

Weight of displaced water = density x volume x gravity = 1000 kg/[tex]m^3[/tex] x 0.085 [tex]m^3[/tex] x 9.81 m/[tex]s^2[/tex] = 83.6 N

Since the buoyant force acting on the horse is equal to the weight of the displaced water, we can use this value to calculate the weight of the horse as follows:

Weight of horse = weight of displaced water = 83.6 N

To convert to kN, we divide by 1000:

Weight of horse = 83.6 N ÷ 1000 = 0.084 kN

Therefore, the weight of the horse is approximately 0.084 kN.

For more such answers on weight

https://brainly.com/question/2514811

#SPJ11

To solve this problem, we need to use Archimedes' principle which states that the weight of the displaced water is equal to the weight of the object.

First, let's find the volume of water displaced by the raft with the horse on it:

Volume = width x length x depth
Volume = 3.7m x 6.1m x 0.037m (converted cm to m)
Volume = 0.8538 m^3

Next, we need to find the weight of the water displaced:

Weight of water = density x volume x gravity
Density of water = 1000 kg/m^3
Gravity = 9.81 m/s^2

Weight of water = 1000 kg/m^3 x 0.8538 m^3 x 9.81 m/s^2
Weight of water = 8379.4 N

Since the weight of the displaced water is equal to the weight of the horse and the raft, we can find the weight of the horse by subtracting the weight of the raft (which we assume to be negligible) from the weight of the water:

Weight of horse = Weight of water - Weight of raft
Weight of horse = 8379.4 N - 0 N
Weight of horse = 8379.4 N

To convert to kN, we divide by 1000:

Weight of horse = 8.3794 kN

Therefore, the weight of the horse is 8.3794 kN.

Learn more about weight brainly.com/question/11244838

#SPJ11

Equal charges, one at rest, the other having a velocity of 10 m/s, are released in a uniform magnetic field. Which charge has the largest force exerted on it by the magnetic field? Select one: a. The charge that is at rest. b. The charge that is moving if its velocity makes an angle of 45° with the direction of the magnetic field when it is released. c. The charge that is moving, if its velocity is parallel to the magnetic field direction when it is released. d. The charge that is moving if its velocity is perpendicular to the magnetic field direction when it is released. All the charges above experience equal forces when released in the same magnetic field.

Answers

The charge that is moving perpendicularly to the direction of the magnetic field experiences the largest force(D).

The force experienced by a charged particle moving in a magnetic field is given by the equation F = qvBsinθ, where q is the charge of the particle, v is its velocity, B is the magnetic field strength, and θ is the angle between the velocity vector and the magnetic field vector.

When the velocity is perpendicular to the magnetic field (θ=90°), sinθ=1, and the force is the largest possible value of F=qvB. Therefore, the charge that is moving perpendicularly to the direction of the magnetic field experiences the largest force.

The charges released with different velocities in different directions experience different forces, but if all charges have the same velocity vector and charge, they will experience the same force. So d is correct option.

For more questions like Magnetic field click the link below:

https://brainly.com/question/23096032

#SPJ11

Other Questions
the nurse is using nonverbal communication techniques including the appropriate use of distance. which situation best demonstrates the appropriate action by the nurse? A firm's total profit equals Multiple Choice a. PMC. b. (PATC)Q. c. PQ. d. (PATC)Q What was the role and impact of Mary Wollstonecraft on the Enlightenment? How is it 2/6 but that would equal 4/6? In Bash, which of the following commands can you use to view the contents of a document. Check all that apply.opencatlessdog do this for brainliest and a lot of points Which of the following answer choices does not include an application of biotechnology?GMOsGel electrophoresisCrossing overTransgenic organisms How can i improve my peronality by eeing moraltiy of Hazrat Khadijah bint Khuwaylid (RA)? how many total wholes are in 7/3. what were tensions like between the two countries during the Cold War and the Arms Race that caused both nations to build up their nuclear arsenals? 4. Kiberly found a box that had 27,955 yellowpaperclips, and a box that had 9,427 bluepaperclips. Which is the best estimate of thedifference of the yellow and blue paperclips?A. 40,000B. 19,000C. 15,000D. 17,000 Which statements belong in the summary? Check all that apply. - Borrowers who met certain requirements for mortgages, such as minimum income level relative to the total mortgage amount, could obtain mortgages that were qualified to be securitized. Such mortgages were called subprime, or Alt-A, mortgages. - Mortgage payments based on short-term interest rates-called adjustable-rate mortgages (ARMS)-were preferred by subprime borrowers. - Investors across the globe were buying mortgage-backed securities for the rate of return that these securities were generating. Most of these investors chose to be ignorant of the risks involved in such investments. - In the 2000s, specialized mortgage brokers were allowed to originate mortgage loans. Earlier mortgage loan originators were Savings & Loan associations (S&Ls) or banks How do you access the Marketing Environment (analysis on Macro and Micro Environment) and Market Segmentation and Targeting?(Example by A Company Success Case Reference) Craig is considering four loans. Loan L has a nominal rate of 8.254%, compounded daily. Loan M hasnominal rateof 8.474%, compounded weekly. Loan N has a nominal rate of 8.533%, compounded monthly. Loan O has a nominalrate of 8.604%, compounded yearly. Which of these loans will offer Craig the best effective interest rate?a. loanb. loan MC.loan Ndloan O Lola and two friends have some beads. They each use 57 beadsto make a bracelet. They have 129 beads left over. How manybeads did the friends start with? Draw the Lewis structure for CH5N. How many lone pairs does it have? choose the best answer(s) from the list below. the glucose alanine cycle involves: 1- the transfer of the amino group from alanine to glutamate to form glutamine in the liver. 2- the transport of pyruvate from muscle to liver in the form of alanine. 3- the transport of nh4 from muscle to liver in the form of alanine. Which progressive reformer was raised in a free, land-owning family in Massachusetts and attendedintegrated public schools? What can we learn from the article entitled "cultivate physically or spiritually crossword clue"? What does Uttersons character Symbolise?