The 3 different types of solutions a 2 variable system can have are a unique solution, no solution and many solutions.
There are 3 types of systems of linear equations which are as follows:
Dependent: The system has infinitely many solutions. The graphs of these equations represent the same lines.
Example: [tex]\left \{ {{2x + 2y = 4} \atop {4x + 4y = 8}} \right.[/tex]
The system has infinitely many solutions.
Independent: The system has exactly one solution. The graphs of these equations intersect at a single point.
Example: [tex]\left \{ {{x + y = 5} \atop {x - y = -1}} \right.[/tex]
The only solution to the system is (2, 3)
Inconsistent: The system has no solution. The graphs of these equations are parallel lines.
Example: [tex]\left \{ {{x + 2y = 9} \atop {2x + 4y = 7}} \right.[/tex]
The system has no solution.
To know more about linear equations, here
https://brainly.com/question/29739212
#SPJ4
please answer these correctly i will mark u brainliest pleaseee.
1) Find the general term of the sequence 5,6,7,8,9,.........
2) Find the midpoint of the line segment A (3,5) B (4,5)
3) Work out and write ur answer in the simplest form :- 3 1/4 + 2 5/6
4) work out the 30th term of 10,13,16,19, .......
5) the ratio of the width to height of a wall is 20cm. what is it's height in meters?
6) Find the mean of 2.1, 4, 6.2, 7, 3.3,
7) Work out and write the answer in the simplest form :- 1 1/2 + 1 5/9
Answer: 1. an = n + 4, 2. ( 3 1/2, 3.5, 5), 3. 6 1/12, 4. 97, 5. 0.2 meters, 6. 4.52, 7. 3 1/18
Step-by-step explanation:
How many gallons of pure water must be added to 500 gallons of a 40% saline solution to reduce it to 25% saline solution
Answer:
300 gallons
Step-by-step explanation:
A saline solution is a solution of salt in water.
The percent is the percent of salt in the total amount of solution.
A 40% saline solution has 40% of salt out of the total volume.
Let the amount of pure water needed = x.
The amount of existing 40% solution is 500 gal.
Let the total amount of 25% saline solution made = y.
Equation of volumes of solutions:
500 + x = y
y = x + 500 Eq. 1
Equation of volume of salt:
500 gal of 40% saline solution has 0.4 × 500 gal = 200 gal of salt
Pure water has 0% salt.
The final product is a solution that is 25% saline. Its volume is y.
The volume of salt in the y gallons of 25% saline solution is 25% of y = 0.25y
The equation of salt content is:
200 + 0 = 0.25y
y = 800 Eq. 2
Eq. 1 and Eq. 2 form a system of equations.
y = x + 500
y = 800
Substitute 800 for y in Eq. 1.
y = x + 500
800 = x + 500
x = 300
Answer: 300 gallons of pure water
You move a box 5 meters and perform 900 joules of work. How much force did you apply to the box?
please help me i need help
Answer:
force = work/distance
force = 900/5
force = 180 N
the amount of bacteria in a fish tank was 830. After 5 hours, the amount of bacteria is 3202.
Complete the table to determine which of these equations could approximate the amount of bacteria
Answer: 37.92
Step-by-step explanation: We know that 3202 / 5 = 640.4.
We subtract that by 830 to get (830 - 640.4 =) 189.6. Then we do / by five again to get 37.92. That is the answer.
d) y = 3x - 9 7) 2) y-int. m = x-int. 3) -
**Disclaimer** Hi there! I assumed the question to be finding the "y-intercept", "x-intercept", and "slope/gradient" of the equation "y = 3x - 9". The following answering will be according to this understanding. If it is incorrect, please tell me and I will modify my answer.
Answer:
y-intercept = (0, -9)
x-intercept = (3, 0)
slope (m) = 3
Step-by-step explanation:
What is being asked: to find the corresponding values
y-interceptx-interceptSlope/gradientGiven equation
y = 3x - 9
PART I: y-interceptConcept
The y-intercept of a line is on the coordinate of (0, a), where [ a ] is a constant.
Substitute values into the equation
y = 3x - 9
y = 3 (0) - 9
y = 0 - 9
y = -9
Therefore, the y-intercept is [tex]\Large\boxed{(0, -9)}[/tex]
PART II: x-interceptConcept
The x-intercept of a line is on the coordinate of (a, 0), where [ a ] is a constant.
Substitute values into the equation
y = 3x - 9
0 = 3x - 9
Add 9 on both sides
0 + 9 = 3x - 9 + 9
9 = 3x
Divide 3 on both sides
9 / 3 = 3x / 3
x = 3
Therefore, the x-intercept is [tex]\Large\boxed{(3,0)}[/tex]
PART III: Slope/GradientConcept
In the linear formula, y = mx + b, [ m ] is the slope and [ b ] corresponds to the y-intercept.
Determine the slope
Given the equation, y = 3x - 9, when corresponds to the general linear equation formula:
y = mx + b
y = 3x - 9
Therefore, the slope is [tex]\Large\boxed{m=3}[/tex]
Hope this helps!! :)
Please let me know if you have any questions
Select the correct answer.
When bisecting AB using string, which step best describes what comes after securing the string at point A and then setting the string length to be a little more than half
of AB?
When you are bisecting AB using a string and you have secured the strong at point A to be more than half of AB, the next step is to C. Make an arc on AB from point A and another arc from point B .
How should AB be bisected?If you are using a string, the first step is the secure that string at point A because the string will be used for the bisecting.
After the string is secured, take the length to just a little more than half of line AB.
Once that is done, use the string to make an arc on line AB from the top to bottom.
Unsecure the string and take it to point B. Once secured in point B, repeat the process done with point A.
This would bisect the line using a string.
In conclusion, option C - Make an arc on AB from point A and another arc from point B is correct.
Options for this question include:
A. Make an arc above AB from point A and another arc on AB from point B . B. Make an arc above and below AB from point A and another arc from point B. C. Make an arc on AB from point A and another arc from point B . D. Make an arc above and below AB from point A and another arc on AB from point B.Find out more on bisecting with a string at https://brainly.com/question/13870436
#SPJ1
Here is a list of numbers: 9.5, 4.4, 8.1, 2.9, 9.2, 3.2, 9.4, 7, 2.5 state the median.
The median of the list of numbers is 7
How to determine the median?The number is given as:
9.5, 4.4, 8.1, 2.9, 9.2, 3.2, 9.4, 7, 2.5
Rearrange the numbers in ascending order
2.5, 2.9, 3.2, 4.4, 7, 8.1, 9.2, 9.4, 9.5
The median is the middle number.
The middle number here is 7
Hence, the median of the list of numbers is 7
Read more about median at:
https://brainly.com/question/14532771
#SPJ1
if f(x)=3^x+10x and g(x)=2x-4 find (f-g) (x) (urgent)
Answer:
(f - g)(x) = [tex]3^{x}[/tex] + 8x + 4
Step-by-step explanation:
(f - g)(x)
= f(x) - g(x)
= [tex]3^{x}[/tex] + 10x - (2x - 4) ← distribute parenthesis by - 1
= [tex]3^{x}[/tex] + 10x - 2x + 4 ← collect like terms
= [tex]3^{x}[/tex] + 8x + 4
At the Junior Olympics, Jacob ran the 500-yard
dash in 80 seconds. Juan's time for the same
distance was t seconds less than Jacob's.
Which expression would accurately calculate
Juan's time?
The Time taken by Jacob to run the dash race is (80 - t) seconds
How to write algebraic expressions?We are told that;
Total distance for the dash race = 500 yards
Time taken by Jacob to run the dash race = 80 seconds
Now, we are told that Juan ran the same dash race but used t less seconds than Jacob. Thus;
Time taken by Jacob to run the dash race = (80 - t) seconds
Read more about algebraic expressions at; https://brainly.com/question/4344214
#SPJ1
Determine which of these sets are subsets of which other of these sets. Check ALL correct answers below.
The Set C is the subset of A and D.
According to the statement
we have given that the three sets which are A = {2, 4, 6}, B = {2, 6}, C = {4, 6}, and D = {4, 6, 8}.
And we have to find that the subsets of these sets.
So,
For a set S to be a subset of a set T, all of the elements of the set S need to be contained in the set T. Firstly, all of the sets are their own subsets, that is, A⊆A,B⊆B,C⊆C,D⊆D.
It follows that B⊂A because of 2∈A and 6∈A. Since 2 is not belongs to C and D. that's why B is not a subset of C and B is not a subset of D.
Taking into account that 4∈A and 6∈A, we conclude that C⊂A. By analogy, since 4∈D and 6∈D, we conclude that C⊂D.
Since |A|>|B|∣A∣>∣B∣ and |A|>|C|,∣A∣>∣C∣, we conclude that A is not a subset of B and A is not a subset of C.
Taking into account that |D|>|B|∣D∣>∣B∣ and |D|>|C|,∣D∣>∣C∣, we conclude that D is not a subset of B and D is not a subset of C. Since,2 not belongs to D that's why A is not a subset of D.
Since 8 not belongs to A, D is not a subset of A.
Overall, The Set C is the subset of A and D.
Learn more about Sets here https://brainly.com/question/2166579
Disclaimer: This question was incomplete. Please find the full content below.
Question:
Suppose that A = {2, 4, 6}, B = {2, 6}, C = {4, 6}, and D = {4, 6, 8}. Determine which of these sets are subsets of which other of these sets.
#SPJ4
what is the answer to this question out of the options given
Answer:
(c) (28/3)√6
Step-by-step explanation:
Side ratios of "special triangles" are used to solve this problem.
30-60-90° triangle — 1 : √3 : 2
45-45-90° triangle — 1 : 1 : √2
ApplicationWe need to apply these ratios a few times:
CD : CE = √3 : 2 ⇒ CE = (7√3)(2/√3) = 14
CE : BE = 1 : √2 ⇒ BE = 14(√2) = 14√2
BE : AE = √3 : 2 ⇒ AE = (14√2)(2/√3) = (28√2)/√3
The fraction can be simplified by multiplying by (√3)/(√3):
((28√2)/√3)×(√3)/(√3) = (28√6)/3
AE = (28/3)√6
Please help me I really need it summer school is as
Answer:
x>-2
Step-by-step explanation:
x>-2 is the answer since we are looking for x values that the graph takes.
The line x=-2 looks like an asymptote so x>-2 must be the answer
Answer: x>-2
Step-by-step explanation:
What is the correct mathematical equation: the monthly consumption ,w, of a household is 237 litres per day with an additional monthly free water usage of 1200 litres. the household spends l litres per month is?
The linear equation for the cost that the household spend in water is given by:
C(d) = 237d + 1200.
What is a linear function?A linear function is modeled by:
y = mx + b
In which:
m is the slope, which is the rate of change, that is, by how much y changes when x changes by 1.b is the y-intercept, which is the value of y when x = 0, and can also be interpreted as the initial value of the function.For this problem, the free usage of 1200 liters is the y-intercept, while the daily usage of 237 liters is slope. Hence the function for the amount the household spends in water in d days is given as follows:
C(d) = 237d + 1200.
More can be learned about linear functions at https://brainly.com/question/24808124
#SPJ1
A square garden has sides of length 10 ft. If topsoil costs $5 / cubic foot, how much will it cost to put a 0. 5 ft layer of topsoil on the entire garden?
Cost to put a 0. 5 ft layer of topsoil on the entire garden is $1000.
The quantity of square units required to completely fill a square is known as the area of a square. The region that lies inside the confines of a flat item or a two-dimensional figure is generally referred to as the area. Measurements are made in square units, with square meters serving as the reference unit
Area of a Square = Side × Side.
Therefore, the area of square = Side square units.
Side of a square garden= 10 ft.
Area of a square garden= Side × Side= 10 × 10 =100 square ft.
Cost of the whole garden = 100×$5 =$500
Cost to put a 0. 5 ft layer of topsoil on the entire garden =$500/0.5
=$1000
Learn more about area of square here
https://brainly.com/question/13389992
#SPJ4
The cost need to put a 0. 5 ft layer of topsoil on the entire garden is $1000
According to the given statement
we have given that the
side length of the square garden is 10ft.
topsoil cost per foot is $5
And we have to find the cost which required to put a 0. 5 ft layer of topsoil on the entire garden.
So,
The side length of the square garden is 10ft.
Now, the volume of the cube is (a)^2
And
Total volume of cube = 10*10
Total volume of cube = 100 per square foot.
Now, we find the cost required for a topsoil.
Cost required to put a topsoil of 1 foot in the total volume of cube = volume*cost
So,
Cost required to put a topsoil of 1 foot in the total volume of cube = 1000*5
Cost required to put a topsoil of 1 foot in the total volume of cube = $5000
if we put a topsoil of 0.5 feet then
The cost required = $5000/0.5
The cost required = $1000.
So, The cost need to put a 0. 5 ft layer of topsoil on the entire garden is $1000
Learn more about Volume of cube here
https://brainly.com/question/3390425
#SPJ4
The slant height and radius of a cone are 4 and 1, respectively. Unrolling the curved surface gives a circular sector with center angle $n^\circ.$ Find $n.$
The centre angle of circular sector is n = 90 degrees (approximately).
What is circular sector?A sector is referred to as a component of a circular made up of the circle's arc and its two radii. It is a section of the circle made up of the arc's circumference and the radius of the circle at its ends.
A piece of pizzas can be used as an analogy for the form of a circle's sector.
The formula for finding the angle formed at the circular sector in radian is;
Let 'n' be the centre angle.
Let 'l' be the slant height of the cone which is equal to radius of circular sector.
Let 'r' be the radius of the cone.
First, calculate the total length of the circular sector say 'L' which is equal to the circumference of the circular base of the cone.
circumference = 2[tex]\pi[/tex]r
= 2×3.14×1
= 6.28
Now,
centre angle = length of circular sector/radius of circle
n = L/l
n = 6.28/4
n = 1.57 radian
Convert radian in degree as;
n = (1.57×180)/[tex]\pi[/tex]
n = 89.95
n = 90 degrees (approximately)
Therefore, the angle made by the circular sector is 90 dergees.
To know more about the area of the sector, here
https://brainly.com/question/22972014
#SPJ4
The correct question is-
The slant height and radius of a cone are 4 and 1, respectively. Unrolling the curved surface gives a circular sector with center angle n degrees. Find n.
(3.2x10 to the power of 5)(5.7x10 to the power of -2)
Answer:
1.320000
2. 0.057
Step-by-step explanation:
What is the volume of the cube below?
Answer:
27
Step-by-step explanation:
volume = side³
v = 3³
v = 27
i dont know how to convert to whatever h is so this is the best answer i can give
Instructions: Find the lengths of the other two sides of the isosceles triangle
Answer:
x=5
h = 5 sqrt 2
Step-by-step explanation:
isosceles right triangles are always 45-45-90, ratio of those triangles are always x:x:x*sqrt 2
WILL MAKE BRAINLIEST!!
Solve for x.
(x-6)°
124°
Answer:
x=62
Step-by-step explanation:
This is a straight angle so they have to add up to 180.
124+x-6=180
118+x=180
x=180-118
x=62
Answer:
62
Step-by-step explanation:
124 + (x - 6) = 180
118 + x = 180
x = 62
Pleaseeeee helppp asap
Answer:
Step-by-step explanation:
Answer:
35.7 megabytes
Step-by-step explanation:
Let's first find 10% of the percent needed. If it is 234 megabytes and 10% has downloaded so far, we conclude that 10% of the download is 23.4 megabytes (since we move the decimal point one spot to the left to find ten percent).
To get to 15% of the percent needed, let's split 10% in half to get the amount of megabytes per every 5%.
23.4/2 = 11.7
We can now conclude that 5% = 11.7. Therefore, 15% will equal (23.4 + 11.7) 35.1 megabytes.
To find the remaining 3.5% left of the percent needed, we use a calculator.
3.5% x 18 = 0.63.
We will add that to the 35.1 megabytes, but we need to round to the nearest tenth, as the question stated. Therefore, we round to 0.6, add it to 35.1, to get a total of 35.7 megabytes.
For 18.5% of the download, it will be 35.7 megabytes.
The gradient of the curve y = ax² + bx at the point (3, 3) is 4. Find the value of a and the value of b.
The curve passes through the point (3, 3), so [tex]y=3[/tex] when [tex]x=3[/tex]. Then
[tex]y = ax^2 + bx \implies 3 = 9a + 3b \implies 3a + b = 1[/tex]
The tangent line to the curve at (3, 3) has gradient [tex]\frac{dy}{dx}[/tex] at [tex]x=3[/tex]. Compute the derivative.
[tex]y = ax^2 + bx \implies \dfrac{dy}{dx} = 2ax + b[/tex]
Then when [tex]x=3[/tex], the gradient is 4, so
[tex]2ax + b = 4 \implies 6a+b=4[/tex]
Solve for [tex]a[/tex] and [tex]b[/tex]. Eliminating [tex]b[/tex], we find
[tex](6a+b) - (3a+b) = 4-1 \implies 3a = 3 \implies \boxed{a=1}[/tex]
and it follows that
[tex]3 + b = 1 \implies \boxed{b = -2}[/tex]
Emanuel used the calculations below to find the product of the given fractions. (Three-fifths) (StartFraction 4 over 9 EndFraction) (Negative one-half)
The correct option is Step 1 StartFraction (3) (4) (negative 1) over (5) (9) (negative 2) EndFraction
Emanuel did a mistake in her first step by taking negative sign twice.
What is multiplicative rule with different sign ?Positive results are obtained if the sign are same. If the signs disagree, the outcome is adverse. Addition: Keep in mind that a signed number's magnitude and absolute value are the same.
Multiplication and division appear to be more difficult than addition and subtraction, but they are actually far less challenging. The result of multiplying two positive or two negative numbers with the same sign, according to the rule, will always be positive.
For instance:
8 x 4 = 32(-8) x (-4) = 3210 x 9 = 90(-10) x (-9) = 90According to question,
= [tex]\left(\frac{3}{5}\right)\left(\frac{4}{9}\right)\left(-\frac{1}{2}\right)[/tex]
Emanuel found the solution, but she erred in the first step. She incorrectly distributes the negative sign with both 1 and 2, as she should. We can write negative sign with either 1 or 2 but not both.
Correct steps are:
Step 1:
[tex]\frac{(3)(4)(-1)}{(5)(9)(2)}[/tex]
Step 2:
[tex]\frac{-12}{90}[/tex]
Step 3:
[tex]-\frac{2}{15}[/tex]
Therefore, the step 1 was miscalculated by Emanuel.
To know more about rule for multiplication for signed numbers, here
https://brainly.com/question/11580958
#SPJ4
The complete question is -
Emanuel used the calculations below to find the product of the given fractions. (Three-fifths) (StartFraction 4 over 9 EndFraction) (Negative one-half)
Step 1 StartFraction (3) (4) (negative 1) over (5) (9) (negative 2) EndFraction Step 2 StartFraction negative 12 over negative 90 EndFraction
Step 3 StartFraction 12 over 90 EndFraction
Step 4 StartFraction 2 over 15 EndFraction
In which step did his first error occur?
2. Find the 20th term of an arithmetic sequence if its 6th term is 14 and 14th term is 6.
can anyone answer this ?
Answer:
[tex]\sf t_{20}= 0[/tex]
Step-by-step explanation:
Arithmetic sequence:[tex]\sf \boxed{\bf n^{th} \ term = a + (n-1)d}\\\\\text{Here, a is the first term ; d is the common difference }[/tex]
6th term is 14 ⇒ [tex]\sf t_6 = 14[/tex]
a + (6 - 1)d = 14
a + 5d = 14 --------------(I)
14th term is 6 ⇒[tex]\sf t_{14} = 6[/tex]
a + (14-1)d = 6
a + 13d = 6 ----------------(II)
Subtract equation (II) from equation(I)
(I) a + 5d = 14
(II) a + 13d = 6
- - -
-8d = 8
d = 8 ÷(-8)
[tex]\sf \boxed{\bf d= (-1)}[/tex]
Plugin d = -1 in equation (I)
a + 5(-1) = 14
a -5 = 14
a = 14 + 5
[tex]\sf \boxed{\bf a = 19}[/tex]
20th term:
[tex]\sf t_{20}= 19 + 19*(-1)[/tex]
= 19 - 19
[tex]\sf \boxed{\bf t_{20} = 0}[/tex]
Answer:
0
Step-by-step explanation:
The number of terms of an Arithmetic progressions has the formular.
Tn = a + ( n - 1 ) d
From the question,
6th term = 14
14th term = 6
Therefore,
a + 5d = 14 -----------(1)
a + 13d = 6 ----------(2)
subtracting
-8d = 8
dividing bothsides by -8
[tex] \frac{ - 8d}{ - 8} = \frac{8}{ - 8} \\ d = - 1[/tex]
Therefore,
common difference= -1
substituting the value of d into equation (1)
a + 5 ( -1) = 14
a - 5 = 14
a = 14 + 5 = 19
First term = 19
For the 20th term
T 20 = a + 19d
19 + 19 ( -1 )
19-19 = 0
Therefore,
20th term = 0
Based on the data in this two-way table, which statement is true?
Using the probability concept, the correct statement is:
B. P(hibiscus|red) = P(hibiscus).
What is a probability?A probability is given by the number of desired outcomes divided by the number of total outcomes.
For item a, the probabilities are:
P(yellow|rose) = 45/105 = 0.4286.P(yellow) = 135/315 = 0.4286.Same probabilities, hence the statement that they are different is false.
For item b, the probabilities are:
P(hibiscus|red) = 80/120 = 2/3.P(hibiscus) = 210/315 = 2/3.Equal, hence this is the correct statement.
More can be learned about probabilities at https://brainly.com/question/14398287
#SPJ1
please help find the answer
Answer:
[tex]AC = \bf 4.13 \space\ cm[/tex]
Step-by-step explanation:
Using Pythagoras's theorem:
[tex]\boxed {a^2 = b^2 + c^2}[/tex],
where:
a ⇒ hypotenuse (AC, ? cm)
b, c ⇒ the two other sides of the triangle (AB = 2.2 cm, BC = 3.5 cm),
we can find the length of AC.
[tex]AC^2 = AB^2 + BC^2[/tex]
⇒ [tex]AC^2 = (2.2)^2 + (3.5)^2[/tex]
⇒ [tex]AC = \sqrt{(2.2)^2 + ((3.5)^2}[/tex]
⇒ [tex]AC = \sqrt{17.9}[/tex]
⇒ [tex]AC = \bf 4.13 \space\ cm[/tex]
Can someone help me please
Answer:
[tex]the \: answer \: is \: choice \: b \: \frac{ - 2 \sin(x) }{1 + \cos(x) } [/tex]
will give you an explanation if you want tag me on comment.
How many four digit numbers a are there such as half of the number a is divisible by 2, a third of a is divisible by 3, and a fifth of a is divisible by 5
We have lcm(2, 3, 5) = 30, but none of 30/2 = 15, 30/3 = 10, nor 30/5 = 6 are divisible by 2, 3, and 5, respectively.
To account for this, take the square of 30, 30² = 900. Then 900/2 = 450, 900/3 = 300, and 900/5 = 180 are respectively divisible by 2, 3, and 5.
Multiply this by 2 to get a 4-digit number. It follows that [tex]\boxed{a=1800}[/tex].
When drawing a context diagram, standardized names should be used within each set of symbols. a. True b. False
The statement is False that When drawing a context diagram, standardized names should be used within each set of symbols.
According to the statement
we have given the statement and we have to show that the statement is a true or false after analyzing.
So, to analyse the statement
Context diagrams show the interactions between a system and other actors (external factors) with which the system is designed to interface. System context diagrams can be helpful in understanding the context .
But we know that the standardized names is not used within each set of symbols. so, this is used in a randomly sets.
that's why the given statement is not true in the case of the standardized names.
So, The statement is False that When drawing a context diagram, standardized names should be used within each set of symbols.
Learn more about context diagram here https://brainly.com/question/2005046
#SPJ4
The two-way table shows the number of students in a school who like hockey and/or football. like hockey do not like hockey total like football 50 25 75 do not like football 30 45 75 total 80 70 150
5 students like hockey more than football.
What is a table?A table is a collection of information or data that is commonly organized in rows and columns but can sometimes have a more sophisticated structure. Tables are common in communication, research, and data analysis. Tables can be found in a variety of media, including print media, handwritten notes, computer software, architectural ornamentation, traffic signs, and many more locations. The specific conventions and vocabulary used to describe tables differ depending on the situation. Tables also range greatly in terms of variety, structure, flexibility, nomenclature, representation, and use.To find out How many more students like hocket than football:
Refer to the given table -
Students who do not like football and like hockey = a = 30
Students who like football and do not like hockey = b = 25
Now,
[tex]=a-b\\=30-25\\=5[/tex]
Therefore, 5 students like hockey more than football.
Know more about a table here:
https://brainly.com/question/25630111
#SPJ4
The question you are looking for is shown below:
The two-way table shows the number of students in a school who like hockey and/or football. like hockey does not like hockey total like football 50 25 75 do not like football 30 45 75 total 80 70 150.
How many more students like hocket than football?
Order the numbers from least to greatest.
Help please….
Answer:
1/2=20/40 19/20=38/40
Step-by-step explanation:
so the first option