whereas the Early transition metal ions are generally quite oxophilic Lewis ligands they coordinate are Lewis A) acids; acids
In transition metal complexes, do ligands behave as Lewis acids?When ligands make coordinate bonds with transition metal ions, they form a complex; the transition metal ion functions as a Lewis acid, while the ligand acts as a Lewis base.
Ligands are Lewis bases, which means they have at least one pair of electrons to provide to a metal atom/ion. Ligands are also referred to as complexing agents. Metal atoms/ions are Lewis acids, which means they may take electron pairs from Lewis bases.
According to the Lewis acid-base principle, the electron pair acceptor is known as the Lewis acid. Transition metals are electron-deficient in general and take electrons from ligands.
learn more about Transition metals
https://brainly.com/question/2879928
#SPJ1
Calculate number of moles 45g H2O
45g of H2O is equivalent to 2.497 moles of water.
What is the molar mass of water?The molar mass of water (H2O) is 18.015 g/mol.
How many molecules are in 45g of water?To calculate the number of molecules in 45g of water, we need to use Avogadro's number, which is 6.022 x 10^23 molecules/mol.
First, we need to calculate the number of moles of water in 45g using the formula:
number of moles = mass / molar mass
number of moles = 45 g / 18.015 g/mol
number of moles = 2.497 mol
Then, we can use Avogadro's number to convert the number of moles to molecules:
number of molecules = number of moles x Avogadro's number
number of molecules = 2.497 mol x 6.022 x 10^23 molecules/mol
number of molecules = 1.505 x 10^24 molecules
Therefore, there are 1.505 x 10^24 molecules in 45g of water.
To calculate the number of moles in 45g of H2O (water), we need to use the molar mass of water, which is 18.015 g/mol.
We can use the formula:
number of moles = mass / molar mass
Substituting the values, we get:
number of moles = 45 g / 18.015 g/mol
number of moles = 2.497 mol (rounded to three significant figures)
Learn more about moles here:
https://brainly.com/question/26416088
#SPJ1
PLSSSSSS HELPPPPP
1) Assuming the diameter of the circle represents a proton, calculate the relative distance of the electron from the proton in a hydrogen atom. Show your calculation in the space below.
2) Roll out a length of yarn to reflect the length you just calculated; this will illustrate the relative distance of the electron from the proton.
3)What can you conclude when comparing the size of the proton with the distance of the electron from the proton?
4)Measure the diameter of a pea with the metric ruler and record this value.
5)Assuming the diameter of the pea represents a proton, calculate the relative distance of the electron from the proton in a hydrogen atom.
6)What do you think lies between the proton and the electron in a hydrogen atom?
7)s the electron always in one spot in a hydrogen atom, or does its position change?
Answer: For 1 is The diameter of a proton is 1.75× 10-15lm. The Bohr radius — the most probable distance from the nucleus to the electron — is 5.29 ×10-11lm. The diameter of a hydrogen atom is therefore 2 × 5.29 ×10-11lm = 1.058 ×10-10lm.
if you have the following reaction, how many moles of water are made for each mole of acetic acid used?g
When we have the following balanced reaction, CH₃COOH + NaOH → CH₃COONa + H₂O, one mole of water is formed for each mole of acetic acid used.
Generally, we can define, Stoichiometry as the calculation of products and reactants in a chemical reaction. It is basically related with numbers. Mole ratio, is common type of stoichiometric relation, which relates the amounts in moles of any two substances in chemical reaction.
We have a balanced chemical reaction, CH₃COOH + NaOH → CH₃COONa + H₂O, where, acetic acid reacts with sodium hydroxide and water molecules formed with Sodium acetate. Now, we have to determine the moles of water are formed for each mole of acetic acid used.
Using the stoichiometry concept, one mole of acetic acid reacts with one mole of sodium hydroxide forming one mole of water and one mole of Sodium acetate. Therefore, one mole of water is formed for each mole of acetic acid used.
For more information about Stoichiometry, visit :
https://brainly.com/question/29007372
#SPJ4
Complete question:
if you have the following reaction,
CH₃COOH + NaOH ==> CH₃COONa + H₂O, how many moles of water are made for each mole of acetic acid used?
Write the equation representing the 3rd ionization energy for Cu.
The equation that is going to show the loss of the third electron from the copper at is;
Cu(s) ----> Cu^3+ + 3e
What is ionization energy?Ionization energy is the amount of energy required to remove an electron from an atom or a positively charged ion in its gaseous state. It is also known as ionization potential or ionization enthalpy.
The ionization energy of an atom varies based on its position in the periodic table, and it generally increases from left to right across a period and decreases down a group.
Learn more about ionization energy:https://brainly.com/question/2838510
#SPJ1
I need help please anyone ?!!!?!
Answer:
answer A is the answer suii
Answer:
A
Explanation:
u put it down and let them pick it up themselves so if anything happens u are not to be blamed
Which of the following molecules would be most favorable to undergo an E2 reaction rather than an SN2 reaction with NaOH
2-bromopropane molecules would be most favorable to undergo an E2 reaction rather than an SN2 reaction with NaOH. Here option B is the correct answer.
An E2 reaction occurs when a strong base removes a proton from a beta-carbon adjacent to a leaving group, leading to the formation of a double bond and the departure of the leaving group. An SN2 reaction, on the other hand, involves a nucleophile attacking the carbon bearing the leaving group while the leaving group departs.
The relative favorability of E2 and SN2 reactions depends on the strength of the nucleophile and the base, the steric hindrance around the carbon bearing the leaving group, and the nature of the leaving group.
In this case, NaOH is a strong base, and the molecule that is most favorable to undergo an E2 reaction is the one with the least steric hindrance around the carbon bearing the leaving group, which is 2-bromopropane. The other molecules have more steric hindrance around the carbon bearing the leaving group, making them less favorable to undergo E2 reactions.
To learn more about bromopropane molecules
https://brainly.com/question/489491
#SPJ4
Complete question:
Which of the following molecules would be most favorable to undergo an E2 reaction rather than an SN2 reaction with NaOH?
a) 1-bromopropane
b) 2-bromopropane
c) 1-chloropropane
d) 2-chloropropane
16. A meteorologist wants to create
a visual aid representing the
percentages of different gases in
Earth's atmosphere. Which type of
chart or graph would best convey this
data?
A. A line graph
B. A scatterplot
C. A table
O D. A pie chart
A liquid has a volume of 40,0 mL and a mass of 45,0 g. Calculate the specific gravity of the liquid
The specific gravity of the liquid is 1.125.
What is the specific gravity of the liquid?The specific gravity of a substance is the ratio of its density to the density of water at a particular temperature.
Therefore, we need to calculate the density of the liquid and compare it to the density of water at the same temperature.
The formula for density is:
density = mass/volume
density of the liquid = 45.0 g / 40.0 mL = 1.125 g/mL
At 4 °C, the density of water is 1.000 g/mL.
Therefore, the specific gravity of the liquid is:
specific gravity = density of liquid / density of water = 1.125 g/mL / 1.000 g/mL = 1.125
Learn more about specific gravity here: https://brainly.com/question/543765
#SPJ1
17 points The Art Forger Who Tricked the Nazis
Where did the trial take place? What was the defendant accused of?
What was strange about his defense?
How did Han van Meegeren manage to forge the works of art so well? What did he do to make them look authentic?
How could forensic testing have changed this case?
What ultimately happened to van Meegeren?
Money to Run, But No Skills to Hide
How did Schrenker try to fake his own death? How did he get caught?
Why is creating a new state ID harder to do these days?
Why is it so difficult to fake a passport? What is the easiest way for criminals to obtain a passport?
Why does Mr. Abagnale claim it is easy to get a fraudulent passport? What steps does someone have to take to make this happen?
Why was Mr. Abagnale arrested? What happened to him after his arrest?
Answer:
but I have a great day to be a good day for a new post it on your own life to be the
5. Calculate the goniometer setting, in terms of 2θ, required to observe the Lβ1 (n=1) lines for Br at λ = 8.126Å when the diffracting crystal is:a) Ethylenediamine d-tartrate (d=4.404Å)b) Ammonium dihydrogen phosphate (d=7.549Å)
When the diffracting crystal is ammonium dihydrogen phosphate, the goniometer setting needed to observe the L1 (n=1) lines for Br at = 8.126 is 2 = 2 x 32.6° = 65.2°.
What is the purpose of a goniometer?A goniometer is a tool that can be used to rotate an object to a specific position or measure an angle. The former description more accurately describes orthopedics. Goniometry is the art and science of determining the joint ranges in each plane of the joint.
Using Bragg's Law, we can determine the goniometer setting for seeing the L1 (n=1) lines for Br at = 8.126:
nλ = 2d sinθ
For the Lβ1 (n=1) lines for Br at λ = 8.126Å, we have:
n = 1
λ = 8.126Å
a) d = 4.404 for ethylenediamine d-tartrate.
When we apply the values to Bragg's Law, we obtain:
1 x 8.126Å = 2 x 4.404Å x sinθ
sinθ = (1 x 8.126Å) / (2 x 4.404Å) = 0.923
θ = sin(0.923) = 68.9°
b) d = 7.549 for ammonium dihydrogen phosphate. Å
When we apply the values to Bragg's Law, we obtain:
1 x 8.126Å = 2 x 7.549Å x sinθ
sinθ = (1 x 8.126Å) / (2 x 7.549Å) = 0.539
θ = sin(0.539) = 32.6°
To know more about dihydrogen phosphate visit:-
https://brainly.com/question/30438460
#SPJ1
Which of the following is an example of a Mechanical Wave.
Sound Waves
O X-Rays
O Light Waves
O Ultraviolet Light
Answer:
sound waves
Explanation:
hope this helps
What kind of scientist would study the effects of acid rain on marble statues? A. A physicist B. A biologist C. A chemist D. An economist
Scientists would research the impacts of marble monuments and acid rain. A chemist. Hoping this is useful.
The correct answer is :C.
What are the substances that change the earth's surface?Surface sediments are transported and large stones are broken up through wind, water, and ice. Years are often needed for weathering, erosion, and deposition to cause noticeable changes. Nonetheless, certain things change the Planet's surface far more quickly than others. Extreme events, earthquakes, and volcanic eruptions are a few of them.
What adjustments to the Planet's surface may rain makes?Weathering and erosion caused by water movement change the properties of the terrain. Regional wind patterns and climate are defined by several interactions, including the role of the ocean. The unique physical and chemical properties of water have a profound effect on the planet's dynamics.
To know more about chemist visit :
https://brainly.com/question/30007736
#SPJ1
. In geologic strontium isotopic analysis by ICP-MS, there is isobaric interference (equal mass isotopes of different elements present in the sample solution) between 87Rb+ and 87Sr+. A collision cell with CH3F converts Sr+ to SrF+ but does not convert Rb+ to RbF+. How does this reaction eliminate interference?
In geologic strontium isotopic analysis by ICP-MS, the use of a collision cell with CH3F helps reduce isobaric interference between 87Rb+ and 87Sr+.
Isotopes can ICP-MS detect?The ability to quantify each element's distinct isotopes makes ICP-MS useful for laboratories looking to compare the ratio of two isotopes of an element or one particular isotope.
Which elements are immune to ICP-MS detection?Only a few elements cannot be measured by ICP-MS: F and Ne (which cannot be ionized in an argon plasma), Ar, N, and O (which are present at high levels in the plasma and air), and H and He (which are below the mass range of the mass spectrometer).
To know more about strontium isotopic visit:-
https://brainly.com/question/2496592
#SPJ1
Select the correct IUPAC name and the common name for a carboxylic acid having a structural formula of CH3-CC View Available Hint(s) propanoic acid, propionic acid 0 methanoic acid, formic acid eethanoic acid acetic acid o ethanoic acid, formic acid
The correct IUPAC name for the carboxylic acid having a structural formula of CH3-CC is ethanoic acid, and its common name is propionic acid.
The correct IUPAC name and the common name for a carboxylic acid having a structural formula of CH3-CC is propanoic acid and propionic acid. Carboxylic acid is a group of organic compounds in which a carboxyl functional group (-COOH) is linked to a hydrocarbon chain. In carboxylic acids, the carbon atom of the carboxyl group is sp2 hybridized, with the remaining p orbital on the carbonyl carbon interacting with a neighboring O atom, allowing for the delocalization of the electron pair on the C=O bond. The carboxyl functional group is composed of a carbonyl group and a hydroxyl group.
The prefix for the group -COOH is carboxy-.The structural formula of CH3-CC:
To determine the IUPAC name and common name of the carboxylic acid with this structural formula, the steps below should be followed:
Propanoic acid is the IUPAC name for CH3-CC carboxylic acid. Propionic acid is the common name for CH3-CC carboxylic acid.
Therefore, the correct IUPAC name and the common name for a carboxylic acid having a structural formula of CH3-CC is propanoic acid and propionic acid.
For more such questions on IUPAC name , Visit:
https://brainly.com/question/28872356
#SPJ11
describe the temperature and pressure conditions at which the gas behaves like an ideal gas
Under specific temperature and pressure conditions, a gas acts as an ideal gas. Particularly, the optimal conditions for the petrol' behaviour are low pressure and high temperature.
An ideal gas is a hypothetical gas made up of numerous tiny particles moving randomly all the time. Intermolecular forces, molecular size, and volume are all presumptions that apply to ideal gases. Additionally, it is presummated that they collide in completely elastic collisions in which there is no kinetic energy loss. The ideal gas law, PV=nRT, which has P as the pressure, V as the volume, n as the number of moles, R as the gas constant, and T as the temperature, can be used to describe the behaviour of an ideal gas. This law offers a helpful model for how many actual gases behave when exposed to situations like high temperatures and low pressures.
Learn more about ideal gas here:
https://brainly.com/question/28267242
#SPJ4
Carbenes can add to alkenes to give a cyclopropane deriverative. Draw the alkene (unknown X) that reacts with the carbene to give the following product. Be sure to clearly indicate the stereochemistry of the alkene by drawing all bonds at the sp2 carbons.
The product of the addition of the carbene to the unknown alkene X is a cyclopropane derivative, with the same stereochemistry as the alkene X.
Carbenes are molecules containing a carbon atom with two non-bonding electrons and a triple bond, and can add to alkenes to give a cyclopropane derivative. The alkene (unknown X) that reacts with the carbene to give the following product is shown in the following diagram. Note that the two sp2 carbons on either side of the double bond are stereochemically distinct, with one carbon pointed "up" and the other pointed "down".
When the carbene adds to the double bond, a three-membered ring forms. This three-membered ring adopts a chair conformation, and the alkene stereochemistry is maintained in the product.
For more such questions on stereochemistry
https://brainly.com/question/13266152
#SPJ11
For a certain series of reactions, if [OH−][HCO−3]/[CO2−3]=K1 and [OH−][H2CO3]/[HCO−3]=K2, what is the equilibrium constant expression for the overall reaction? Write the overall equilibrium equation.
Answer:
Explanation:
The overall equilibrium equation can be obtained by combining the two given equations:
H2CO3 + OH- → HCO3- + H2O (1)
HCO3- + OH- → CO32- + H2O (2)
Adding equations (1) and (2), we get:
H2CO3 + 2OH- → CO32- + 2H2O
Dividing the second equation by the first, we get:
[CO32-][H2O]/[HCO3-] = K2
Multiplying the above equation with the first equation, we get:
[H2CO3][CO32-][H2O]^2/[HCO3-] = K1*K2
Thus, the equilibrium constant expression for the overall reaction is:
[K] = [H2CO3][CO32-][H2O]^2/[HCO3-]
where [K] = K1*K2.
The principle of polymers. polymers clearly plan an important role in the molecular economy of the cell. for each statement below, state why it is false and change it to a correct description.
a. polymers are assembled from monomers in an extracellular compartment and are transported into the cell when required.
b. polysaccharides are one of the three main macromolecular polymers in the cell. a polysaccharide molecule contains a number of different monomers, which gives rise to millions of polysaccharide sequences.
Polysaccharides are a type of carbohydrate polymer composed of repeating units of monosaccharides. They are not one of the three main types of macromolecular polymers in the cell.
The reason for false statement are as following :-
a. The statement is false because polymers are assembled from monomers within the cell, not in an extracellular compartment. Cells have the ability to synthesize a variety of polymers, including nucleic acids, proteins, and carbohydrates, to perform specific functions within the cell. The assembly of polymers from monomers is an energy-intensive process that requires enzymes and specific conditions, such as the appropriate temperature and pH level. Therefore, the synthesis of polymers typically occurs within the cell.
A correct description would be: Polymers are assembled from monomers within the cell, and the synthesis of polymers is an energy-intensive process that requires enzymes and specific conditions.
b. The statement is false because polysaccharides are not one of the three main macromolecular polymers in the cell. The three main types of macromolecular polymers in the cell are nucleic acids, proteins, and carbohydrates. Polysaccharides are a type of carbohydrate polymer, but they are not one of the three main types of macromolecular polymers. Polysaccharides are composed of repeating units of monosaccharides, which gives rise to a limited number of polysaccharide sequences.
A correct description would be: Polysaccharides are a type of carbohydrate polymer composed of repeating units of monosaccharides. They are not one of the three main types of macromolecular polymers in the cell.
To know more about polymers, visit:-
https://brainly.com/question/1602388
#SPJ1
which substance would shatter when hit with a hammer? steel, bronze, table salt, copper
Answer:
Table salt.
Explanation:
Table salt would shatter when hit with a hammer.
How Scandium affects the government
bababoy jijijijajdiwhrjfofhebdlodvebfif
Balance the equation by typing the numbers that should be in each blank space.
_____Mg + _____HCl → _____MgCl2 + _____H2
The air trapped inside a 240 mL glass bottle has a pressure of 1.0 atm and a temperature of 25.0 °C. You put the glass bottle into a freezer. After several hours, the air trapped inside the bottle has a temperature of -35.0 °C and a pressure of 0.80 atm. Determine the value of k for the air trapped inside the glass bottle before and after cooling to show that P equals kT.
The value of k for the air trapped inside the glass bottle before and after cooling is 0.2021, thus proving that P equals kT.
The air trapped inside a 240 mL glass bottle has a pressure of 1.0 atm and a temperature of 25.0 °C. To determine the value of k for the air trapped inside the glass bottle before and after cooling to show that P equals kT, we need to use the ideal gas law equation, which states that PV = nRT, where P is pressure, V is volume, n is the number of moles of gas, R is the ideal gas constant, and T is temperature. When the bottle is put into the freezer, the temperature decreases from 25.0 °C to -35.0 °C and the pressure decreases from 1.0 atm to 0.80 atm. Therefore, we can calculate the value of k by plugging in the values of pressure and temperature into the equation: PV = nRT. By rearranging the equation and solving for k, we find that k = PV/nRT. Plugging in the values, we get k = (1.0 atm x 240 mL) / (n x 0.0821 atm•L/mol•K x (25.0°C - (-35.0°C)) = 0.2021. This means that the value of k for the air trapped inside the glass bottle before and after cooling is 0.2021, thus proving that P equals kT.
For more such questions on cooling
https://brainly.com/question/17282820
#SPJ11
How many moles are 2.96 x 1020 atoms of iron?
Answer: There are 3019.2 atoms of iron.
Answer:
Explanation:
Iron is a ductile, malleable, silver-white metallic element, scarcely known in a pure condition, but much used in its crude or impure carbon-containing forms for making tools, implements, machinery, etc. Symbol: Fe; atomic weight: 55.847; atomic number: 26; specific gravity 7.86 at 20°C.
1 mol contains [tex]=6.02\times10^{23}[/tex] particles, whether it be atoms, ions, molecules or whatever (Avogadro's number).
So you just divide:
[tex]\frac{2.96\times10^{20}}{6.02\times10^{23}}[/tex] = = 4.9169435215947 × 10^-4
(d) Calculate the number of moles of O atoms in 3.5×1024 molecules of Al2(SO4)3
please help!!!
Answer:
The chemical formula of aluminum sulfate is Al2(SO4)3.
The formula shows that there are 3 atoms of oxygen (O) in each molecule of Al2(SO4)3.
Number of molecules of Al2(SO4)3 = 3.5×1024
Number of O atoms in 1 molecule of Al2(SO4)3 = 3
Number of O atoms in 3.5×1024 molecules of Al2(SO4)3 = (3.5×1024) x 3
= 1.05×1025
Therefore, there are 1.05×1025 moles of O atoms in 3.5×1024 molecules of Al2(SO4)3.
How does a phase change affect a thermochemical equation?
O It alters the products.
O It alters the moles of reactants.
O It affects the balance of the equation.
O It can affect the AH value.
The correct answer is option D, It can affect the AH value.
What is a phase change?A phase change is a physical change in a substance in which the substance's state of matter is changed, such as from a gas to a liquid or from a liquid to a solid. It is also known as a phase transition.
Phase changes also involve changes in energy, temperature, and pressure. For example, when a solid melts to become a liquid, it absorbs energy and the temperature rises. When a liquid boils to become a gas, energy is released and the temperature decreases. Similarly, when a gas condenses to become a liquid, energy is released and the pressure increases.
Learn more about phase change here:
https://brainly.com/question/25664350
#SPJ1
Describe heterogeneous catalysts Question Heterogeneous catalysis most frequently involves a catalyst in the solid phase liquid phase gas phase any of the above
Heterogeneous catalysis involves a catalyst in the solid phase, meaning that the catalyst is a solid material while the reactants are either in the liquid or gas phase. A catalyst is a substance that increases the rate of a chemical reaction without being consumed in the process. It is also known as a "spark plug" because it is the agent that initiates the reaction.
The most frequently used type of catalysts in heterogeneous catalysis is those in the solid phase. Heterogeneous catalysis is a process that involves a catalyst that is in a different phase from the reactants or products. Therefore, the answer to the question above is a catalyst in the solid phase.A catalyst is a substance that increases the rate of a chemical reaction without itself being consumed in the process.
In other words, it increases the rate of a chemical reaction by reducing the activation energy needed to start the reaction. The catalytic process involves three stages: adsorption, reaction, and desorption.Heterogeneous catalystsHeterogeneous catalysts are those catalysts that are in a different phase from the reactants or products in a chemical reaction. Heterogeneous catalysis most frequently involves a catalyst in the solid phase, although it can also involve a catalyst in the liquid or gas phase.
Heterogeneous catalysis typically involves a solid catalyst that is in contact with a liquid or gas reactant. A good example of heterogeneous catalysts is when a metal oxide catalyst is used to break down nitrogen oxides in car exhaust gases.
For more such questions on catalysis
https://brainly.com/question/30542891
#SPJ11
How many atoms of lithium are in 18.7 g?
The atoms of lithium that are in 18.7 g is 16 × 10²³ atoms . This is taken out by mole concept .
What is mole concept ?The mole is a unit of measurement similar to the pair, dozen, gross, and so on. It provides a precise count of the atoms or molecules in a bulk sample of matter. A mole is the amount of substance that contains the same number of discrete entities (atoms, molecules, ions, etc.)
if 7 grams of lithium contain 6 × 10²³ atoms
then 18.7 will contain 16 × 10²³ atoms
to know more about mole concept , visit ;
brainly.com/question/31123980
#SPJ1
1. Choose the atom with the larger electronegativity.
Select one:
a. Rubidium
b. Caesium
2. Choose the atom with the larger electronegativity.
Select one:
a. Boron
b. Indium
Answer:
1) b. Caesium
2) b. Indium
molarity of a solution that contains 29.4 grams of NaCl in 250 ml of water?
Answer:
2.16 M
Explanation:
The molarity of the solution is 2.16 M. To calculate the molarity, you need to first determine the number of moles: 29.4 grams of NaCl is equal to 0.737 moles. Then, divide the number of moles, 0.737, by the volume of the solution, which is 250 mL. Multiplying the result by 1000 gives the molarity, which is 2.16 M.
yw
draw the diagram of the formation of copper tetramine ion
Answer:
[tex]this \: is \: the \: diagram \: of \: the \: formation \: of \: \\ copper \: tetramine \: ion[/tex]