Who deals with the cosmos order?

Answers

Answer 1

Answer: Cosmology

Explanation:


Related Questions

if a substance has a density of 13.6g/ml that is the same as if it has a density of 1.36kg/l.

Answers

There are 1000 milliliters in a liter, the two expressions of density are mathematically equivalent. By converting the units, we can see that 13.6 g/ml is equal to 1.36 kg/l.

Density is a physical property that describes the compactness or concentration of a substance. It is defined as the mass per unit volume of the substance. In the metric system, density is commonly expressed in grams per milliliter (g/ml) or kilograms per liter (kg/l).

In the given scenario, the substance has a density of 13.6 g/ml, which means that for every milliliter of the substance, it has a mass of 13.6 grams. On the other hand, if the density is expressed as 1.36 kg/l, it means that for every liter of the substance, it has a mass of 1.36 kilograms.

It is important to note that the numerical value of density remains the same regardless of the units used. However, expressing density in different units can provide convenience and clarity depending on the context and the magnitude of the substance being measured.

You can learn more about density at: brainly.com/question/29775886

#SPJ11

Rutherford's scattering experiments gave the first indications that an atom consists of a small, dense, positively charged nucleus surrounded by negatively charged electrons. His experiments also allowed for a rough determination of the size of the nucleus. In this problem, you will use the uncertainty principle to get a rough idea of the kinetic energy of a particle inside the nucleus.
Consider a nucleus with a diameter of roughly 5.0×10−15 meters.
Part A
Consider a particle inside the nucleus. The uncertainty Δx in its position is equal to the diameter of the nucleus. What is the uncertainty Δp of its momentum? To find this, use ΔxΔp≥ℏ.
Express your answer in kilogram-meters per second to two significant figures.
Part B
The uncertainty Δp sets a lower bound on the average momentum of a particle in the nucleus. If a particle's average momentum were to fall below that point, then the uncertainty principle would be violated. Since the uncertainty principle is a fundamental law of physics, this cannot happen. Using Δp=2.1×10−20 kilogram-meters per second as the minimum momentum of a particle in the nucleus, find the minimum kinetic energy Kmin of the particle. Use m=1.7×10−27 kilograms as the mass of the particle. Note that since our calculations are so rough, this serves as the mass of a neutron or a proton.
Express your answer in millions of electron volts to two significant figures.

Answers

Rutherford's scattering experiments gave the first indications that an atom consists of a small, dense, positively charged nucleus surrounded by negatively charged electrons. Consider a nucleus with a diameter of roughly 5.0×[tex]10^{-15}[/tex] meters. The uncertainty in momentum is 2.1×[tex]10^{-20}[/tex] kg m/s. The minimum kinetic energy is 1.1×[tex]10^{6}[/tex] eV, or 1.1 million electron volts.

Part A

The uncertainty principle states that ΔxΔp≥ℏ, where Δx is the uncertainty in position, Δp is the uncertainty in momentum, and ℏ is the reduced Planck constant.

For a particle inside the nucleus, Δx is equal to the diameter of the nucleus, which is 5.0×[tex]10^{-15}[/tex] meters. Therefore

ΔxΔp≥ℏ

(5.0×[tex]10^{-15}[/tex] )(Δp)≥(1.054×[tex]10^{-34}[/tex])

Δp≥(1.054×[tex]10^{-34}[/tex])/(5.0×[tex]10^{-15}[/tex] )

Δp≥2.11×[tex]10^{-20}[/tex] kgm/s

Rounded to two significant figures, the uncertainty in momentum is 2.1×[tex]10^{-20}[/tex] kgm/s.

Part B

The minimum kinetic energy Kmin of a particle in the nucleus can be found using the formula

Kmin = [tex]p^{2}[/tex] / 2m

Where p is the minimum momentum of the particle, and m is the mass of the particle.

Substituting the given values

Kmin = (2.1×[tex]10^{-20}[/tex] )^2 / (2×1.7×[tex]10^{-27}[/tex])

Kmin = 1.7×[tex]10^{-10}[/tex] J

To convert this to electron volts, we can use the conversion factor 1 eV = 1.602×[tex]10^{-19}[/tex] J

Kmin = ( 1.7×[tex]10^{-10}[/tex] J) / (1.602×[tex]10^{-19}[/tex] J)

Kmin = 1.06×[tex]10^{9}[/tex]eV

Rounded to two significant figures, the minimum kinetic energy is 1.1×[tex]10^{6}[/tex] eV, or 1.1 million electron volts.

To know more about uncertainty in momentum here

https://brainly.com/question/13032962

#SPJ4

The uncertainty principle states that ΔxΔp≥ℏ, where ℏ is Planck's constant divided by 2π (ℏ = h/2π). We are given Δx = 5.0×[tex]10^{-15}[/tex] meters. Therefore, ΔxΔp≥ℏ gives us: Δp ≥ ℏ/Δx, Δp ≥ (h/2π)/Δx

Δp ≥ (6.63×[tex]10^{-34}[/tex] J s)/(2π × 5.0×[tex]10^{-15}[/tex] m), Δp ≥ 2.1×[tex]10^{-20}[/tex] kg m/s. Therefore, the uncertainty in momentum is Δp = 2.1×[tex]10^{-20}[/tex] kg m/s. The minimum kinetic energy [tex]K_{min}[/tex]of a particle is given by [tex]K_{min}[/tex]= [tex]p^{2}[/tex]/(2m), where p is the momentum of the particle and m is its mass. We are given Δp = 2.1×[tex]10^{-20}[/tex] kg m/s and m = 1.7×[tex]10^{-27}[/tex] kg. Therefore, [tex]K_{min}[/tex] = [tex]p^{2}[/tex]/(2m), [tex]K_{min}[/tex] = (2.1×[tex]10^{-20}[/tex] kg m/s)^2/(2 × 1.7×[tex]10^{-27}[/tex] kg), [tex]K_{min}[/tex] = 1.5×[tex]10^{-10}[/tex] J. To convert to electron volts, we divide by the charge of an electron (1.602×[tex]10^{-19}[/tex] C) and multiply by [tex]10^{-6}[/tex] to get:[tex]K_{min}[/tex] = (1.5×[tex]10^{-10}[/tex] J)/(1.602×[tex]10^{-19}[/tex] C) × [tex]10^{-6}[/tex], [tex]K_{min}[/tex] = 0.93 MeV (million electron volts). Therefore, the minimum kinetic energy of a particle inside the nucleus is approximately 0.93 MeV.

Learn more about uncertainty principle here :

https://brainly.com/question/30325893

#SPJ11

knowing what you now know about other bodies in our solar system, what other places might we find lava tubes on in our solar system?

Answers

Based on current knowledge, other places in our solar system where lava tubes may be found include the Moon, Mars, Venus, and some of Jupiter's moons like Io.

Lava tubes, natural tunnels formed by molten lava, can exist beyond Earth. The Moon is a prime candidate, with evidence of intact tubes and skylights observed by spacecraft and rovers. Mars also displays indications of lava tube structures, identified through geological features and subsurface data. Venus, with its volcanic past, may have lava tubes despite its harsh conditions. Among Jupiter's moons, Io exhibits intense volcanic activity, making it a probable site for lava tube networks. Enceladus and Titan (Saturn's moons) and even the dwarf planet Ceres could potentially harbor lava tubes due to their geologically active nature. Further research and exploration missions will contribute to our understanding of these features in the solar system.

Learn more about lava tubes here:

https://brainly.com/question/30749268

#SPJ11

an engine with a carnot efficiency of 40% draws heat from a high-temperature reservoir at 615 k. if the temperature of the reservoir into which the engine exhausts heat cannot be changed, then in order to increase the carnot efficiency of the engine to 50%, the temperature of the heat source should be increased to

Answers

The heat source's temperature needs to be raised to 738 K in order to achieve a 50% Carnot efficiency boost in the engine.

The Carnot efficiency of an engine is given by the formula:

[tex]Carnot efficiency = 1 - \left(\frac{T_c}{T_h}\right)[/tex]

where Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.

Given that the initial Carnot efficiency is 40% (or 0.40) and the initial temperature of the hot reservoir Th is 615 K, we can solve for the initial temperature of the cold reservoir Tc:

[tex]0.40 = 1 - \frac{T_c}{615}[/tex]

[tex]\frac{T_c}{615} = 1 - 0.40[/tex]

[tex]\frac{Tc}{615} = 0.60[/tex]

Tc = 0.60 * 615

Tc = 369 K

To increase the Carnot efficiency to 50% (or 0.50) while keeping the temperature of the cold reservoir fixed, we need to find the new temperature of the hot reservoir Th.

[tex]0.50 = 1 - \frac{T_c}{T_h}[/tex]

[tex]0.50 = 1 - \frac{369}{T_h}[/tex]

[tex]\frac{369}{T_h} = 1 - 0.50[/tex]

[tex]\frac{369}{T_h} = 0.50[/tex]

[tex]Th = \frac{369}{0.50}[/tex]

Th = 738 K

Therefore, to increase the Carnot efficiency of the engine to 50%, the temperature of the heat source should be increased to 738 K.

To know more about the Carnot efficiency refer here :

https://brainly.com/question/14470167#

#SPJ11

Complete question :

An engine with a Carnot efficiency of 40% draws heat from a high-temperature reservoir at 615 K. If the temperature of the reservoir into which the engine exhausts heat cannot be changed, then in order to increase the Carnot efficiency of the engine to 50%, the temperature of the heat source should be increased to?

the reciprocal of the hubble constant (1/h) is a rough measure of the:

Answers

The reciprocal of the Hubble constant (1/H) is a rough measure of the age of the universe.

The Hubble constant represents the current rate of expansion of the universe, indicating how fast galaxies are moving away from each other. Taking the reciprocal of the Hubble constant gives an estimate of the time it would take for the universe to double in size if the expansion rate remained constant. By calculating the reciprocal of the Hubble constant, astronomers can obtain a rough estimate of the age of the universe. This estimate is known as the Hubble time or the age of the universe based on the assumption of a constant expansion rate. However, it's important to note that the actual age of the universe is influenced by other factors and can be more accurately determined through various cosmological measurements and models.

Learn more about Hubble constant here:

https://brainly.com/question/30004197

#SPJ11

The system in Problem 9.6 was placed under a closed-loop PI control. Determine if the system will have an overshoot for a step input:
a. Kp = 2 and Ki = 1
b. Kp = 1 and Ki = 3

Answers

The overshoot in a closed-loop PI control system depends on the values of Kp and Ki, as well as the system dynamics.

To determine if the system will have an overshoot for a step input, we need to first calculate the closed-loop transfer function using the PI controller. The transfer function for the given system is:
G(s) = 1 / (s² + 3s + 2)
Using the PI controller, the closed-loop transfer function is given by:
Gc(s) = Kp + Ki/s
The overall closed-loop transfer function is then:
Gcl(s) = G(s) * Gc(s) / (1 + G(s) * Gc(s))
Substituting the values of Kp and Ki for each case, we get:                          a. Kp = 2 and Ki = 1

In this case, the proportional gain is relatively high, which could potentially result in an overshoot. However, the integral gain is low, which can help reduce the overshoot. It is not possible to determine the exact overshoot without more information about the system itself.

To know more about potentially visit:-

https://brainly.com/question/4305583

#SPJ11

The allowed energies of a quantum system are 0.0 eV, 5.5 eV , and 8.5 eV .What wavelengths appear in the system's emission spectrum?

Answers

If The allowed energies of a quantum system are 0.0 eV, 5.5 eV , and 8.5 eV then  the emission spectrum of this quantum system consists of photons with wavelengths of 358 nm and 233 nm.

The wavelengths in the system's emission spectrum can be found using the formula:

λ = hc/E

where λ is the wavelength, h is Planck's constant, c is the speed of light, and E is the energy of the photon emitted.

Using the given energies of the quantum system, we can calculate the wavelengths corresponding to the emitted photons:

For an energy of 0.0 eV, the wavelength is:

λ = hc/E = (6.626 x 10⁻³⁴ J s) x (2.998 x 10⁸ m/s) / (0 eV) = undefined (since division by 0 is undefined)

For an energy of 5.5 eV, the wavelength is:

λ = hc/E = (6.626 x 10⁻³⁴ J s) x (2.998 x 10⁸ m/s) / (5.5 eV x 1.602 x 10⁻¹⁹ J/eV) = 3.58 x 10⁻⁷ m = 358 nm

For an energy of 8.5 eV, the wavelength is:

λ = hc/E = (6.626 x 10⁻³⁴ J s) x (2.998 x 10⁸m/s) / (8.5 eV x 1.602 x 10⁻¹⁹ J/eV) = 2.33 x 10⁻⁷m = 233 nm

Therefore, the emission spectrum of this quantum system consists of photons with wavelengths of 358 nm and 233 nm.

To learn more about wavelength https://brainly.com/question/10750459

#SPJ11

draw a rough sketch of the laplace s-plane that corresponds to the inside of the unit circle

Answers

The inside of the unit circle in the Laplace s-plane corresponds to the region of convergence (ROC) of a causal and stable LTI system.

The Laplace s-plane is a complex plane used in control theory and signal processing. It is used to study the behavior of linear time-invariant (LTI) systems. The s-plane has two axes, the real axis and the imaginary axis, and the Laplace transform of a signal maps it from the time domain to the s-plane. In the s-plane, the unit circle is the circle centered at the origin with radius 1. The inside of the unit circle corresponds to a region of convergence (ROC) for a causal and stable LTI system. A causal and stable system has an ROC that includes the entire left half of the s-plane (Re{s}<0), which is the region of convergence for the Laplace transform. The ROC is important because it determines the range of frequencies for which the Laplace transform is defined. If the Laplace transform is not defined for a particular frequency range, then the system is not stable or causal. Therefore, the inside of the unit circle in the s-plane corresponds to the frequencies for which the LTI system is stable and causal.

learn more about Laplace s-plane here:

https://brainly.com/question/31397769

#SPJ11

An emitter follower with a BJT biased at Ic = 2 mA and having β = 100 is connected between a source with Rsig-10 kΩ and a load RL-0.5 k12. a. Find Rin, vb/vsig, and vo/vsig b. If the signal amplitude across the base-emitter junction is to be limited to 10 mV, what is the corre- sponding amplitude of vsig and vo? c. Find the open-circuit voltage gain Gro and the output resistance Rout. Use these values first to verify the value of Gt obtained in (a), then to find the value of Gu obtained with RL reduced to 250 Ω.

Answers

We have analyzed an emitter follower circuit with a BJT biased at Ic = 2 mA and having β = 100. We have calculated the input resistance, voltage gain, and output voltage for a given input signal amplitude.

a) To find Rin, we can assume that the emitter follower is in its small signal equivalent circuit and replace the transistor with its T-model:

T-Model of BJT Emitter Follower

The resistance looking into the base is given by:

Rin = β * re = β * (VT / Ic) = 100 * (25 mV / 2 mA) = 1 kΩ

where VT is the thermal voltage (approximately 25 mV at room temperature) and re is the small signal emitter resistance.

The voltage gain from the base to the emitter is approximately 1 (since the emitter voltage follows the base voltage), so we can write:

vb/vsig = Rin / (Rin + Rsig) = 1 kΩ / (1 kΩ + 10 kΩ) = 0.091

The output voltage is given by:

vo = (1 - β) * ib * RL

where ib is the base current, which is approximately equal to the emitter current since the emitter voltage follows the base voltage. Therefore, we have:

ib = ic / (β + 1) = 2 mA / 101 = 19.8 µA

and

vo/vsig = -RL / (Rin + Rsig) = -0.045

b) The maximum base-emitter voltage is 10 mV, so the maximum input voltage amplitude is:

vsig_max = 10 mV / (0.091) = 110 mV

The corresponding output voltage amplitude is:

vo_max = -0.045 * 110 mV = -4.95 mV

c) The open-circuit voltage gain is given by:

Gro = -β * RL / (Rin + Rsig) = -100 * 0.5 kΩ / (1 kΩ + 10 kΩ) = -4.55

The output resistance of the emitter follower can be approximated by the resistance looking into the emitter, which is given by:

Rout = re || RL = (VT / Ic) || RL = 12.5 Ω

Using these values, we can verify the voltage gain and input resistance obtained in part (a):

Gt = vo_max / vsig_max = -4.95 mV / 110 mV = -0.045

Rin = 1 kΩ

To find the voltage gain with RL reduced to 250 Ω, we can use the formula:

Gu = -β * RL / (Rin + Rsig + (β + 1) * re)

where re is the small signal emitter resistance. We can approximate re as before, so we have:

Gu = -100 * 250 Ω / (1 kΩ + 10 kΩ + 101 * 12.5 Ω) = -1.78

To learn more about voltage

https://brainly.com/question/29445057

#SPJ4

a. The values are as follows:

Rin = β × (Rsig || (β × Re))

vb/vsig = -Rin / (Rsig + Rin)

vo/vsig = -β × (Rin / (Rsig + Rin)) × (RL / (RL + Re))

b. To limit the signal amplitude across the base-emitter junction to 10 mV, the corresponding amplitude of vsig and vo can be calculated using the given values and the formula: vsig = (vb / vb/vsig) and vo = (vo / vo/vsig).

c. The open-circuit voltage gain (Gro) can be calculated as Gro = -β × (Rin / (Rsig + Rin)) × (RL / (RL + Re)), and the output resistance (Rout) can be obtained as Rout = RL || (β × Re).

Determine the value of resistance?

To verify the value of Gt obtained in part (a), substitute the values in the given formula for Gro and compare them. To find the value of Gu with RL reduced to 250 Ω, substitute the new value of RL in the formula for Gro to obtain the new value of Gu.

a. Rin is the input resistance of the circuit, which is calculated using the formula Rin = β × (Rsig || (β × Re)), where β is the current gain of the BJT.

vb/vsig is the voltage gain from the input to the base-emitter junction, and vo/vsig is the voltage gain from the input to the output.

b. To limit the signal amplitude across the base-emitter junction to 10 mV, we need to adjust the input voltage amplitude (vsig) and output voltage amplitude (vo) accordingly.

vsig can be calculated using vsig = (vb / vb/vsig), and vo can be calculated using vo = (vo / vo/vsig).

c. The open-circuit voltage gain (Gro) is given by Gro = -β × (Rin / (Rsig + Rin)) × (RL / (RL + Re)). To verify the value of Gt obtained in part (a), substitute the values in the formula for Gro and compare them.

The output resistance (Rout) is calculated as Rout = RL || (β × Re). To find the value of Gu with RL reduced to 250 Ω, substitute the new value of RL in the formula for Gro to obtain the new value of Gu.

To know more about amplitude, refer here:

https://brainly.com/question/9525052#

#SPJ4

TRUE OR FALSE the nitrogen geysers of triton carry carbon grit into the winds of its atmosphere.

Answers

The statement that the nitrogen geysers of Triton carry carbon grit into the winds of its atmosphere is false.

Triton is a moon of the planet Neptune, and it is known for its unique geological features, including nitrogen geysers. These geysers are believed to erupt from beneath the surface, expelling nitrogen gas and dust particles into space. However, there is no evidence or scientific consensus to suggest that these geysers carry carbon grit into the winds of Triton's atmosphere.

Carbon grit refers to small particles of carbonaceous material, such as soot or dust. While carbon compounds have been detected on Triton's surface, primarily in the form of organic molecules, there is no specific information or observations indicating the presence of carbon grit being transported by nitrogen geysers or carried into Triton's atmosphere.

The understanding of Triton's atmosphere and geology is based on limited direct observations, as the Voyager 2 spacecraft provided the most detailed data during its flyby in 1989. Further investigations and future missions may provide additional insights into the composition and dynamics of Triton's atmosphere and the role of geysers in its overall processes.

To know more about Triton, please click on:

https://brainly.com/question/734019

#SPJ11

Design a circuit that will set a reasonable operating point for a transistor with the characteristics of Fig. 4.31. Assume that the power rating for the transistor is 25 mW. 9 40 35 8 7 30 25 20 15 10 6 Ic(mA) 4 3 2 1 0 0 5 2 4 6 Vce(V 8 10 Figure 4.31 Transistor /-Vcharacteristics for Problems 1,3,4,and 8

Answers

we can design a circuit that biases the transistor at Ic = 5 mA and Vce = 6 V to set a reasonable operating point for the transistor. The specific circuit design will depend on the application and other requirements, but a simple circuit that can achieve this biasing is a voltage divider circuit with appropriate resistor values.

What circuit can be designed to set  safe operating point for  transistor with characteristics shown in Fig. 4.31, assuming a power rating  25 mW?To set a reasonable operating point for the transistor with the characteristics of Fig. 4.31, we need to determine the values of Ic and Vce that will ensure the transistor operates in the active region and does not exceed its maximum power rating.

From the given characteristics of the transistor, we can see that the maximum collector current (Ic) is approximately 9 mA at a collector-emitter voltage (Vce) of 0 V. Therefore, we can choose a collector current of 5 mA to ensure that the transistor operates within its safe limits.

To determine the corresponding value of Vce, we need to find the point on the graph where the transistor characteristics intersect the line representing Ic = 5 mA. This point is located at approximately Vce = 6 V.

Learn more about circuit

brainly.com/question/27206933

#SPJ11

what happens to wind waves as they approach a shoreline? group of answer choices the wave velocity decreases, the wave height increases, and the wavelength increases. the wave velocity decreases, the wave height increases, and the wavelength decreases. the wave velocity increases, the wave height increases, and the wavelength increases. the wave velocity increases, the wave height increases, and the wavelength decreases. the wave velocity decreases, the wave height decreases, and the wavelength decreases.

Answers

The wave velocity decreases, the wave height increases, and the wavelength increases. Option 1 is Correct.

As wind waves approach a shoreline, the wave height generally increases, the wavelength decreases, and the wave velocity increases. This is because the energy of the waves is dissipated as they approach the shore, and the breaking of the waves causes the water to be thrown up onto the shore, which increases the height of the waves.

The decreasing wavelength and increasing wave velocity are both consequences of the energy dissipation that occurs as the waves approach the shore. Therefore, the correct answer is: the wave velocity decreases, the wave height increases, and the wavelength increases. Option 1 is Correct.

Learn more about wavelength Visit: brainly.com/question/24452579

#SPJ4

Correct Question:

what happens to wind waves as they approach a shoreline? group of answer choices

1. the wave velocity decreases, the wave height increases, and the wavelength increases.

2. the wave velocity decreases, the wave height increases, and the wavelength decreases.

3. the wave velocity increases, the wave height increases, and the wavelength increases.

4.  the wave velocity increases, the wave height increases, and the wavelength decreases.

5. the wave velocity decreases, the wave height decreases, and the wavelength decreases.

Calculate the gauge pressure at a depth of 690 m in seawater

Answers

The gauge pressure at a depth of 690 m in seawater is approximately 68.01 MPa. At any depth in a fluid, the pressure exerted by the fluid is determined by the weight of the fluid column above that point.

In the case of seawater, the pressure increases with depth due to the increasing weight of the water above. To calculate the gauge pressure at a specific depth, we can use the formula:

[tex]\[ P = \rho \cdot g \cdot h \][/tex]

where P is the pressure, [tex]\( \rho \)[/tex] is the density of the fluid, g is the acceleration due to gravity, and h is the depth.

For seawater, the average density is approximately 1025 kg/m³. The acceleration due to gravity is 9.8 m/s². Plugging in these values and the depth of 690 m into the formula, we can calculate the gauge pressure:

[tex]P = 1025 Kg/m^3.9.8m/s^2.690m[/tex]

Calculating this expression gives us a gauge pressure of approximately 68.01 MPa.

To learn more about pressure refer:

https://brainly.com/question/8033367

#SPJ11

A metal bar is in the xy-plane with one end of the bar at the origin. A force F⃗ =(F→=( 6.56 N )i+( -2.60 N )j is applied to the bar at the point x = 3.62 m, y = 3.68 m.

Answers

The magnitude of the torque about the origin due to the force F⃗ is 23.9 Nm.

τ = r⃗ × F⃗

To find r⃗, we subtract the position vector of the origin (0,0) from the position vector of the point of application of the force (3.62, 3.68):

r⃗ = (3.62, 3.68) - (0, 0) = (3.62, 3.68)

Now we can calculate the cross product of r⃗ and F⃗ using the determinant:

τ =

| i j k |

| 3.62 3.68 0 |

| 6.56 -2.60 0 |

τ = (3.68)(0) - (0)(-2.60) + (3.62)(-6.56)

τ = -23.9 Nm

The torque is negative, which means it is in the clockwise direction about the origin.

To find the magnitude of the torque, we take the absolute value:

|τ| = 23.9 Nm

Therefore, the magnitude of the torque about the origin due to the force F⃗ is 23.9 Nm. Note that we cannot determine the angular acceleration of the bar without knowing its moment of inertia.

For more such questions on magnitude

https://brainly.com/question/30337362

#SPJ11

The magnitude of the torque about the origin due to the force F⃗ is 23.9 Nm.

τ = r⃗ × F⃗

To find r⃗, we subtract the position vector of the origin (0,0) from the position vector of the point of application of the force (3.62, 3.68):

r⃗ = (3.62, 3.68) - (0, 0) = (3.62, 3.68)

Now we can calculate the cross product of r⃗ and F⃗ using the determinant:

τ = | i j k |

| 3.62 3.68 0 |

| 6.56 -2.60 0 |

τ = (3.68)(0) - (0)(-2.60) + (3.62)(-6.56)

τ = -23.9 Nm

The torque is negative, which means it is in the clockwise direction about the origin.

To find the magnitude of the torque, we take the absolute value:

|τ| = 23.9 Nm

Therefore, the magnitude of the torque about the origin due to the force F⃗ is 23.9 Nm. Note that we cannot determine the angular acceleration of the bar without knowing its moment of inertia.

For more such questions on magnitude:

brainly.com/question/30337362

#SPJ11

What is the average distance the car traveled from the top of the track? cm What is the average distance the washer traveled from the top of the track? cm.

Answers

The average distance the car traveled from the top of the track and the average distance the washer traveled from the top of the track are not provided in the given information. Without specific values or data regarding the distances, it is not possible to determine the average distances traveled by the car and the washer.

In order to calculate the average distances traveled by the car and the washer from the top of the track, we need specific measurements or data points. The average distance is typically calculated by summing up all the individual distances and then dividing by the total number of distances.

Without any information on the measurements or data points, such as the starting and ending positions or the specific distances covered, it is not possible to determine the average distances traveled by the car and the washer. It is important to have precise measurements or data points in order to make accurate calculations and determine the average distances.

Learn more about average distance here:

https://brainly.com/question/13905361

#SPJ11

aim (i) to determine the spring constants of the given spring (at lease five springs) by oscillation method. (ii) to find the unknown masses from the spring constant and period of the oscillator.

Answers

In order to determine the spring constants of given springs, we can use the oscillation method. This involves measuring the period of oscillation of the spring when a known mass is attached to it and then using the formula T=2π√(m/k) to calculate the spring constant, where T is the period, m is the mass and k is the spring constant.

By repeating this process with at least five different masses, we can determine the spring constants of the given springs. Once we have the spring constant and the period of the oscillator, we can use the formula m=k(T/2π)^2 to find the unknown masses attached to the spring. It is important to note that the period of oscillation is dependent on the mass and the spring constant, so it is necessary to measure both variables accurately to obtain reliable results.
To determine the spring constants (k) of five springs using the oscillation method, follow these steps:

1. Set up each spring vertically and attach a known mass (m) to its end.
2. Displace the mass slightly and release, allowing it to oscillate.
3. Measure the period (T) of oscillation for each spring (time for one complete cycle).
4. Use Hooke's Law and the formula T = 2π√(m/k) to calculate the spring constant (k) for each spring.

To find unknown masses (m) using the spring constant and period of the oscillator:

1. Rearrange the formula T = 2π√(m/k) to solve for m: m = (T^2 * k) / (4π^2).
2. Plug in the known values of k and T to calculate the unknown mass (m).

To learn more about Oscillation click here:brainly.com/question/30111348

An inductor has a peak current of 250 µA when the peak voltage at 43 MHzis 3.7 V.a)What is the inductance? the answer is 55 µHb) If the voltage is held constant, what is the peak current at 86 mHz ?

Answers

To find the inductance of the inductor, we can use the formula:Vpeak = L × ω × Ipeak the peak current at 86 MHz with a constant voltage of 3.7 V is 66.6 µA.

Voltage, also known as electric potential difference, is the measure of the difference in electric potential energy between two points in an electric circuit. It is the driving force that pushes electric charge through a circuit. Voltage is measured in volts (V) and is typically represented by the symbol "V".

To know more about electric visit :

https://brainly.com/question/31668005

#SPJ11

what is the potential energy for a dust particle of mass 5.00×10−9kg and charge 2.00 nc at the position in part d ? do not consider gravitational potential energy.

Answers

The potential energy for a dust particle of mass 5.00×10−9kg and charge 2.00 nc at the position in part d is determined by the electric potential at that point and the charge of the particle.

The electric potential at a point in space is the amount of potential energy per unit charge that a particle would have if it were located at that point. It is measured in volts (V) and is a scalar quantity. The electric potential at a point due to a point charge q at a distance r from the charge is given by the equation: V = kq/r.

To find the potential energy, we first need to know the electric potential (V) at the position in part d. Unfortunately, you have not provided information about part d or the electric potential at that position. Once you have the value of V, you can proceed with the calculation. Assuming you have the electric potential value (V), you can now calculate the potential energy (U) using the formula U = qV. First, convert the charge of the dust particle from nC to C (Coulombs) by multiplying by 10^(-9), so 2.00 nC = 2.00 × 10^(-9) C. Then, plug the values of q and V into the formula to find the potential energy (U).
To know more about potential energy visit:

https://brainly.com/question/24284560

#SPJ11

consider a 567 nm wavelength yellow light falling on a pair of slits separated by 0.11 mm.

Answers

The angle for the third-order maximum of 567-nm wavelength yellow light falling on double slits separated by 0.11 mm is 0.86 degrees.

The angle for the third-order maximum can be calculated using the formula:

sinθ = mλ/d

where θ is the angle of diffraction, λ is the wavelength of the light, d is the distance between the slits, and m is the order of the maximum.

In this case, the wavelength of the yellow light is λ = 567 nm = 5.67 × 10^-7 m, the distance between the slits is d = 0.11 mm = 1.1 × 10^-4 m, and we want to find the angle for the third-order maximum, so m = 3.

Plugging these values into the formula, we get:

sinθ = 3 × 5.67 × 10^-7 m / (1.1 × 10^-4 m)

sinθ = 0.015

Taking the inverse sine (sin^-1) of both sides of the equation, we get:

θ = sin^-1(0.015)

θ = 0.86 degrees

For more question on wavelength click on

https://brainly.com/question/10728818

#SPJ11

CORRECT FORM OF QUESTION

Calculate the angle for the third-order maximum of 567-nm wavelength yellow light falling on double slits separated by 0.11 mm.

In this case, the wavelength of the yellow light is 567 nm, which is in the visible range of the electromagnetic spectrum. The separation distance between the slits is 0.11 mm.

Given a 567 nm wavelength yellow light falling on a pair of slits separated by 0.11 mm, we can analyze the interference pattern created by this setup.

1. Convert the wavelength and slit separation to the same units (meters in this case):

Wavelength (λ) = 567 nm = 567 * 10^(-9) m
Slit separation (d) = 0.11 mm = 0.11 * 10^(-3) m

2. Calculate the angular separation (θ) between adjacent bright fringes using the formula for the interference pattern in a double-slit experiment:

θ = λ / d

3. Substitute the given values:

θ = (567 * 10^(-9)) / (0.11 * 10^(-3))

4. Simplify:

θ ≈ 5.16 * 10^(-6) radians

So, when a 567 nm wavelength yellow light falls on a pair of slits separated by 0.11 mm, the angular separation between adjacent bright fringes in the interference pattern is approximately 5.16 * 10^(-6) radians.

Learn more about wavelength here : brainly.com/question/12924624

#SPJ11

what is the launch speed of a projectile that rises vertically above the surface of the earth to an altitude equal to 5 earth radii before momentarily coming to a rest

Answers

The launch speed of the projectile is approximately 11.2 km/s.

What is the initial velocity required for the projectile to reach an altitude of 5 Earth radii?

When a projectile is launched vertically above the surface of the Earth, it follows a parabolic trajectory due to the gravitational force acting on it. To determine the launch speed required for the projectile to reach an altitude equal to 5 Earth radii, we can consider the conservation of mechanical energy.

Initially, the projectile has kinetic energy (½mv²) and gravitational potential energy (mgh), where m is the mass of the projectile, v is its velocity, and h is its height above the surface of the Earth. At the highest point of its trajectory, the projectile comes to rest momentarily, which means its final kinetic energy becomes zero. Therefore, the total mechanical energy at the highest point is equal to the initial mechanical energy.

The gravitational potential energy is given by mgh, where h is the height above the surface of the Earth. At the highest point, the height is equal to 5 Earth radii, which is 5 times the radius of the Earth (R). Therefore, the gravitational potential energy at the highest point is given by mgh = m * g * 5R.

The kinetic energy at the highest point is zero. Thus, the total mechanical energy is equal to the gravitational potential energy alone: mgh = m * g * 5R.

The initial mechanical energy is the sum of the initial kinetic energy and the initial gravitational potential energy, which can be written as ½mv² + mgh. At the highest point, this energy is equal to the gravitational potential energy: ½mv² + mgh = m * g * 5R.

Simplifying the equation, we have ½v² + gh = 5gR.

Since the projectile comes to rest momentarily at the highest point, the final velocity is zero (v = 0). Substituting this into the equation, we have 0 + g * 5R = 5gR.

Simplifying further, we find R = R, which means the equation holds true for any value of R. Therefore, the launch speed of the projectile is independent of the radius of the Earth.

Substituting R = 6,371 km (the average radius of the Earth), we can solve for the launch speed:

0 + 9.8 m/s² * 5 * 6,371 km = v²

v² = 313,979,800 m²/s²

v ≈ 17,718 m/s ≈ 17.7 km/s

Therefore, the launch speed of the projectile required to reach an altitude equal to 5 Earth radii before momentarily coming to a rest is approximately 17.7 km/s.

Learn more about projectile

brainly.com/question/28043302

#SPJ11

The weight of passengers on a roller coaster increases by 53% as the car goes through a dip with a 33m radius of curvature.What is the car's speed at the bottom of the dip?

Answers

The speed of the car at the bottom of the dip is approximately 18.0 m/s.

To solve this problem, we can use the formula for centripetal force:

F = m*v^2 / r

where F is the centripetal force, m is the mass of the roller coaster car and passengers, v is the speed of the car, and r is the radius of curvature.

We know that the weight of the passengers increases by 53%, which means their mass also increases by 53%. Let's say the original mass of the car and passengers is m0, then the new mass is:

m = m0 * 1.53

We also know that the radius of curvature is 33m. So we can rewrite the formula as:

F = m0 * 1.53 * v^2 / 33

Now we need to find the speed of the car at the bottom of the dip. At this point, the centripetal force is equal to the weight of the car and passengers, which we can calculate using their increased mass:

F = m * g

where g is the acceleration due to gravity (9.81 m/s^2).

Putting these equations together, we get:

m0 * 1.53 * v^2 / 33 = m * g

Substituting m = m0 * 1.53, we get:

m0 * 1.53 * v^2 / 33 = m0 * 1.53 * g

Simplifying, we get:

v^2 = 33 * g

Taking the square root, we get:

v = sqrt(33 * g)

Plugging in g = 9.81 m/s^2, we get:

v = sqrt(323.93) ≈ 18.0 m/s

Learn more about speed here:-

https://brainly.com/question/17661499

#SPJ11

The two clay blocks in the previous question collide and stick together after the collision. There are no outside forces acting on the blocks. The total kinetic energy of the system before the collision is KE, and the total kinetic energy of the system after the collision is KEF. What is KEJ/KEF? A) 119 B) 1 C)3 D)4 E) 9

Answers

In an isolated system with no external forces, the law of conservation of kinetic energy states that the total kinetic energy before a collision is equal to the total kinetic energy after the collision. Therefore, option B is correct.

Kinetic energy is a form of energy associated with the motion of an object. It is defined as the energy an object possesses due to its velocity or speed. The kinetic energy of an object depends on its mass (m) and its velocity (v).

Kinetic energy is a scalar quantity and is typically measured in joules (J) in the International System of Units (SI).

Learn more about kinetic energy, here:

https://brainly.com/question/999862

#SPJ12

A square-channeled stream has a depth of 2m and a width of 8m. It takes a piece of floating debris 10 minutes to travel 700m in the stream. What is the discharge of the stream (in m/second)? (1 minute = 60 seconds) Express your answer as a number rounded to the nearest hundredth (two decimal places) with the units m3/sec, no spaces. (i.e 1422.43m3/sec)

Answers

Answer:The discharge of the stream can be calculated using the formula Q = Av, where Q is the discharge, A is the cross-sectional area of the stream, and v is the velocity of the water.

The cross-sectional area of the stream is A = depth x width = 2m x 8m = 16m^2.

To find the velocity of the water, we can use the formula v = d/t, where d is the distance traveled by the debris and t is the time taken.

Converting the time to seconds, we get t = 10 minutes x 60 seconds/minute = 600 seconds.

Therefore, the velocity of the water is v = 700m / 600s = 1.17m/s.

Plugging in the values for A and v, we get:

Q = Av = 16m^2 x 1.17m/s = 18.72 m^3/s.

Therefore, the  discharge of a stream is 18.72 m^3/s (rounded to the nearest hundredth).

Learn more about the discharge of a stream:

https://brainly.com/question/31730508?referrer=searchResults

#SPJ11

determine the convergence set of the given power series in parts (a) through (f).

Answers

As no specific power series is given, it is impossible to determine the convergence set. The convergence set of a power series depends on its coefficients and the variable it is being evaluated at. The convergence set can be determined using various tests such as the ratio test, root test, or comparison test. The radius of convergence can also be found using the ratio or root test. If the convergence set is the entire real line, the power series is said to converge everywhere, while if it is empty, the power series does not converge anywhere.

In summary, the convergence set of a power series depends on its coefficients and variable. Various tests can be used to determine the convergence set, and if the set is the entire real line, the power series converges everywhere, while if it is empty, the power series does not converge anywhere.

Learn more about determine here:

https://brainly.com/question/31755910

#SPJ11

Radio station WKCC broadcasts at 600 on the AM dial. What is the wavelength of this radiation? (c = 3 x 108 m/s). O A. 200 m OB. 0.5 km c. 5 km OD. 20 km O E. 50 m.

Answers

The wavelength of the radiation broadcasted by radio station WKCC is approximately 500 meters.

To find the wavelength of the radiation broadcasted by radio station WKCC, we can use the formula:
wavelength = speed of light/frequency

Here, the frequency is given as 600 on the AM dial. However, we need to convert this to Hertz (Hz) since frequency is measured in Hz.


To do this, we can use the formula:
frequency in Hz = (frequency on dial x 1000 kHz) + 500 kHz

Plugging in the values, we get:
frequency in Hz = (600 x 1000) + 500000 = 600500 Hz

Now we can calculate the wavelength:
wavelength = speed of light / frequency in Hz
wavelength = 3 x 10^8 / 600500 = 499.58 meters

To know more about wavelength of the radiation visit:

https://brainly.com/question/9108146

#SPJ11

(a) What is the intensity in W/m2 of a laser beam used to burn away cancerous tissue that, when 90.0% absorbed, puts 500 J of energy into a circular spot 2.00 mm in diameter in 4.00 s? (b) Discuss how this intensity compares to the average intensity of sunlight (about 700 W/m2 ) and the implications that would have if the laser beam entered your eye. Note how your answer depends on the time duration of the exposure.

Answers

(a) The intensity of a laser beam used to burn away cancerous tissue is 3.59 × 10⁷ W/m².

(b) The intensity of the laser beam is much higher than the average intensity of sunlight which could cause severe damage or blindness.

(a) To calculate the intensity of the laser beam, we first need to determine the energy absorbed by the tissue, which is 90.0% of the total energy.

Total energy absorbed = 0.9 × 500 J = 450 J

Next, we find the area of the circular spot:

Area = π × (diameter/2)² = π × (0.002 m / 2)² ≈ 3.14 × 10⁻⁶ m²

Now, we can calculate the intensity of the laser beam:

Intensity = (Energy absorbed) / (Area × Time)
Intensity = (450 J) / (3.14 × 10⁻⁶ m² × 4 s) ≈ 3.59 × 10⁷ W/m²

(b) The intensity of the laser beam (3.59 × 10⁷ W/m²) is much higher than the average intensity of sunlight (700 W/m²). If the laser beam entered your eye, it could cause severe damage or blindness due to the extremely high intensity. The extent of damage depends on the duration of exposure; longer exposure to the laser beam would result in more severe damage.

Learn more about laser beam here: https://brainly.com/question/13071147

#SPJ11

a nylon string on a tennis racket is under a tension of 275 n. if the diameter is 1.20 mm, by how much is it lengthened from its un-tensioned length of 32.0 cm? elasticity of nylon is 3x109 n/m2.

Answers

A nylon string on a tennis racket is under a tension of 275 n. Now, if the diameter is 1.20 mm. We have to find by how much is it lengthened from its un-tensioned length of 32.0 cm. Given, the elasticity of nylon is 3x10^9 n/m^2.

To calculate the amount by which the nylon string is lengthened from its untensioned length, we can use the following formula:

ΔL = (F * L) / (A * E)

Where ΔL is the change in length of the string, F is the tension force applied to the string (275 N in this case), L is the original length of the string (32.0 cm), A is the cross-sectional area of the string (which can be calculated using the formula for the area of a circle: A = πr^2, where r is the radius of the string), and E is the elasticity of the nylon (3x10^9 N/m^2).

First, let's calculate the radius of the string:

diameter = 1.20 mm = 0.12 cm (since there are 10 mm in 1 cm)
radius = 0.12 cm / 2 = 0.06 cm

Next, let's calculate the cross-sectional area of the string:

A = πr^2
A = π(0.06 cm)^2
A = 0.01131 cm^2

Now we can plug in all the values into the formula and solve for ΔL:

ΔL = (F * L) / (A * E)
ΔL = (275 N * 32.0 cm) / (0.01131 cm^2 * 3x10^9 N/m^2)
ΔL = 2.4 x 10^-6 m (or 0.0024 mm)

Therefore, the nylon string on the tennis racket is lengthened by approximately 0.0024 mm from its untensioned length of 32.0 cm.

Learn more about diameter at: https://brainly.com/question/10907234

#SPJ11

A proton moves along the x-axis with vx=1.0�107m/s.
a)
As it passes the origin, what are the strength and direction of the magnetic field at the (0 cm, 1 cm, 0 cm) position? Give your answer using unit vectors.
Express your answer in terms of the unit vectors i^, j^, and k^. Use the 'unit vector' button to denote unit vectors in your answer.

Answers

The magnetic field at the point (0 cm, 1 cm, 0 cm) is B = 0 i^ + 0 j^ + 1.6×10^-7 k^.

A proton moving along the x-axis with a velocity of 1.0×107m/s generates a magnetic field. At the position (0 cm, 1 cm, 0 cm), the strength and direction of the magnetic field can be determined using the right-hand rule. The direction of the magnetic field is perpendicular to both the velocity of the proton and the position vector at the point (0 cm, 1 cm, 0 cm).

Expressing the answer using unit vectors, the magnetic field can be written as B = Bx i^ + By j^ + Bz k^, where i^, j^, and k^ are unit vectors in the x, y, and z directions, respectively. The magnitude of the magnetic field is given by B = μ0qv/4πr2, where μ0 is the permeability of free space, q is the charge of the proton, v is the velocity of the proton, and r is the distance between the proton and the point (0 cm, 1 cm, 0 cm).

Using this formula, the strength of the magnetic field at the point (0 cm, 1 cm, 0 cm) can be calculated. The distance between the proton and the point is r = (1+0+0.01) cm = 0.01005 m. Plugging in the values, we get B = (4π×10^-7 Tm/A)(1.6×10^-19 C)(1.0×10^7 m/s)/(4π(0.01005 m)^2) = 1.6×10^-7 T.

The direction of the magnetic field can be determined using the right-hand rule. Since the velocity of the proton is in the positive x-direction, and the position vector is in the positive y-direction, the magnetic field must be in the positive z-direction.

To know more about the magnetic field, click here;

https://brainly.com/question/14848188

#SPJ11

An oscillating voltage of fixed amplitude is applied across a circuit element. If the frequency of this voltage is increased, the amplitude of the current will 23. A. increase if the circuit element is either an inductor or a capacitor. B. decrease if the circuit element is either an inductor or a capacitor. C. increase if the circuit element is an inductor, but decrease if the circuit element is a capacitor D. decrease if the circuit element is an inductor, but increase if the circuit element is a capacitor. E. will stay the same if the circuit element is either an inductor or a capacitor.

Answers

The correct answer is C - the amplitude of the current will increase if the circuit element is an inductor, but decrease if the circuit element is a capacitor.

The amplitude of the current will depend on whether the circuit element is an inductor or a capacitor. If the circuit element is an inductor, the amplitude of the current will increase as the frequency of the voltage is increased.

This is because an inductor opposes changes in the current flowing through it and stores energy in its magnetic field. As the frequency increases, the inductor has less time to store energy and more time to release it, resulting in an increase in current amplitude.

On the other hand, if the circuit element is a capacitor, the amplitude of the current will decrease as the frequency of the voltage is increased. This is because a capacitor opposes changes in the voltage across it and stores energy in its electric field.

As the frequency increases, the capacitor has less time to store energy and more time to release it, resulting in a decrease in current amplitude.It is important to note that if the circuit element is a resistor, the amplitude of the current will remain the same regardless of the frequency of the voltage.

To know more about capacitor refer to

https://brainly.com/question/31627158

#SPJ11

In a standard US precipitation gauge, 15 inches of rain water is collected in the measuring tube. What is precipitation?
15 inches of rain
1.5 inches of rain
30 inchies of rain
3 inches of rain.

Answers

The amount of rainfall collected in a standard US precipitation gauge is 15 inches. Therefore, the precipitation is 15 inches of rain.

Precipitation is the process of water falling from the atmosphere to the ground in various forms, including rain, snow, sleet, and hail. In this case, 15 inches of rainwater has been collected in the measuring tube of a standard US precipitation gauge.

Therefore, the amount of precipitation in this case is also 15 inches of rain. It is important to note that precipitation is measured over a specific period of time, usually in inches or centimeters, and can vary greatly depending on geographic location and weather patterns. Understanding precipitation patterns and amounts is crucial for a variety of fields, including agriculture, hydrology, and climate science.

To know more about the precipitation refer here :

https://brainly.com/question/30231225#

#SPJ11

Other Questions
I need to know which numbers go in what sections.Please help!! The nurse is supposed to be gone only a half hour, but she is actually gone for how long? Does black opaque Tights Make your Muscles feel comfortable and relaxed 3.3 - 3.7n - 2n + 8 nnnnnnnnnnnnnnnnnn 7.89 7.890Are they equal or which on is greater? Part A: find the value for x:Part B: what is the value of angle A? For questions 6-15 use one of the following choices for each question. The choices may be used more thanonce. Just write the letter for the choice not the word A. Mutualism B. Commensalism C. Parasitism6. One organism is harmed in a relationship7. Two organisms benefit from a relationship8. A tree with a Spanish moss population is unaffected by the relationship9. A population of mice destroys grass roots in a field10. A plotist that lives in a termite intestine digests wood eaten by the termite11. A small insect called an aphid harms the stems and leaves of rosebushes12. Bacteria make Vitamin B12 in the human intestine13. Your cat has a severe case of fleas14. A mosquito stabs the skin on your arm and a bite develops15. Two organisms live together, one benefits and the other is neither helped or harmed by therelationship Help me I'm confused! Mercury has a radius of 2.43x10^6 m, and a mass of 3.2x10^23 kg, what is Mercury's acceleration due to gravity? please help asap!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!will give brainliest!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I am in need of help Test Scores. You are taking a math test in which items in part A are worth 10 points and items in part B are worth 15 points. It takes 3 min. to complete each item of part A and 6 min. to complete each item in part B. The total time allowed is 60 min. and you do exactly 16 questions. How many questions of each part did you complete? Assuming that all your answers were correct, after all you had a GREAT Math Teacher, what was your score? The table shows how water in the US was used in 2010. Which statement accurately summarizes the data?More water was used to farm aquatic organisms than to make products.More water was used to make products than to produce electricity.More water was used to produce electricity than to grow crops.More water was used to grow crops than to mine land resources. Describe a situation where value at one level of the enterprise may not be seen as valuable at another level Find the value of x in the triangle, pls help I need this so bad, if you want points you can tell me in the COMMENTS and I'll make a thing just for u!! But pls don't answer if u don't know thanks love u!! In an isosceles trapezoid the base angles are? 3) If the slope of PQ is 4 and the slope of OR is 1/2 , find the slope of SR so that PQRS is a parallelogram. 100 people are asked their favorite color. 29 people say that blue is their favorite color.What percentage of the group chose blue? Tom plans to save twice as much next month as he did during the months he saved over $30 a month. How much will Tom save next month?This question is a multiple-choice answer.A. $63B. $126C. $86D. $43 SORRY THAT YOU GUYS HAVE TO READ THIS BUT:Mi garganta est loca, l te seguir lastimandoMi garganta loca, chaqueta recta, traje blancoIYKYK the song