Erin washed the car 4 minutes slower than half of the amount of time it took time it took Tad to mow the lawn. In total, the two jobs took Erin and Tad 62 minutes. The amount of minutes that the jobs took Erin (x) and Tad (y) are given with the system of equations.



A. 31


B. 29


C. 22


D. 18

Answers

Answer 1

The time taken by Erin to wash the car when given that she took 4 minutes slower than half of the amount of time it took Tad to mow the lawn and the total time taken by the two jobs (washing the car and mowing the lawn) is 62 minutes is 8 minutes.

Given the statements: Erin washed the car 4 minutes slower than half of the time it took Tad to mow the lawn. In total, the two jobs took Erin and Tad 62 minutes. The given problem is to find the time taken by Erin to wash the car when given that she took 4 minutes slower than half of the amount of time it took Tad to mow the lawn and the total time taken by the two jobs (washing the car and mowing the lawn) is 62 minutes. We can solve the problem by writing two equations with two variables and then solve them using any of the methods. The number of minutes that the jobs took Erin (x) and Tad (y) is given with the system of equations:

x + y = 62

x = (y/2) - 4

To solve the given problem, we need to substitute the value of x in the first equation:

x + y = 62(y/2 - 4) + y

625y - 32 = 1245

y = 24

Therefore, the time taken by Erin (x) is:

x = (y/2) - 4

x = (24/2) - 4

x = 12 - 4

x = 8 minutes

The given problem is to find the time taken by Erin to wash the car when given that she took 4 minutes slower than half of the amount of time it took Tad to mow the lawn and the total time taken by the two jobs (washing the car and mowing the lawn) is 62 minutes.

Therefore, the time taken by Erin to wash the car is 8 minutes. The correct answer is (A) 8 minutes. Therefore, the time taken by Erin to wash the car when given that she took 4 minutes slower than half of the amount of time it took Tad to mow the lawn and the total time taken by the two jobs (washing the car and mowing the lawn) is 62 minutes is 8 minutes.

To know more about the system of equations, visit:

brainly.com/question/21620502

#SPJ11


Related Questions

write dissociation reactions for the following ionic compounds (example: bai2(s) ba2 (aq) 2 i−(aq) ): a) kcl(s) b) cabr2(s) c) fe2(so4)3(s)

Answers

Potassium chloride (KCl) is a binary ionic compound consisting of potassium cations (K+) and chloride anions (Cl-).  a) KCl(s) → K+(aq) + Cl-(aq). b) CaBr2(s) → Ca2+(aq) + 2Br-(aq). c) Fe2(SO4)3(s) → 2Fe3+(aq) + 3SO42-(aq).

a) KCl(s) → K+(aq) + Cl-(aq)

Potassium chloride (KCl) is a binary ionic compound consisting of potassium cations (K+) and chloride anions (Cl-). When KCl is dissolved in water, it dissociates into its constituent ions, i.e., K+ and Cl-. This process is represented by the above chemical equation.

b) CaBr2(s) → Ca2+(aq) + 2Br-(aq)

Calcium bromide (CaBr2) is also a binary ionic compound consisting of calcium cations (Ca2+) and bromide anions (Br-). When CaBr2 is dissolved in water, it dissociates into its constituent ions, i.e., Ca2+ and 2Br-. This process is represented by the above chemical equation.

c) Fe2(SO4)3(s) → 2Fe3+(aq) + 3SO42-(aq)

Iron(III) sulfate (Fe2(SO4)3) is a complex ionic compound consisting of two iron cations (Fe3+) and three sulfate anions (SO42-). When Fe2(SO4)3 is dissolved in water, it dissociates into its constituent ions, i.e., 2Fe3+ and 3SO42-. This process is represented by the above chemical equation.

Learn more about Potassium chloride here

https://brainly.com/question/25380525

#SPJ11

The singular points of the differential equation xy''+y'+y(x+2)/(x-4)=0 are Select the correct answer. 0 none 0, -2 0, -2, 4 0, 4

Answers

The singular point(s) of the differential equation are x = 4.

To find the singular points of the differential equation xy'' + y' + y(x + 2)/(x - 4) = 0, we need to find the values of x at which the coefficient of y'' or y' becomes infinite or undefined, since these are the points where the equation may behave differently.

The coefficient of y'' is x, which is never zero or undefined, so there are no singular points due to this term.

The coefficient of y' is 1, which is also never zero or undefined, so there are no singular points due to this term.

The coefficient of y is (x + 2)/(x - 4), which becomes infinite or undefined when x = 4, so 4 is a singular point of the differential equation.

Therefore, the singular point(s) of the differential equation are x = 4.

Note that this analysis does not consider any initial or boundary conditions, which may affect the behavior of the solution near the singular point(s).

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ11

Lincoln invested $2,800 in an account paying an interest rate of 5 3/8 % compounded continuously. Lily invested $2,800 in an account paying an interest rate of 5 7/8 % compounded quarterly. After 15 years, how much more money would Lily have in her


account than Lincoln, to the nearest dollar?

Answers

Given, Lincoln invested $2,800 in an account paying an interest rate of 5 3/8 % compounded continuously. Lily invested $2,800 in an account paying an interest rate of 5 7/8 % compounded quarterly.

After 15 years, we need to calculate how much more money would Lily have in her account than Lincoln, to the nearest dollar. Calculation of Lincoln's investment Continuous compounding formula is A = Pe^rt Where, A is the amount after time t, P is the principal amount, r is the annual interest rate, and e is the base of the natural logarithm.

Lincoln invested $2,800 in an account paying an interest rate of 5 3/8 % compounded continuously .i.e. r = 5.375% = 0.05375 and P = $2,800Thus, A = Pe^rtA = $2,800 e^(0.05375 × 15)A = $2,800 e^0.80625A = $2,800 × 2.24088A = $6,292.44Step 2: Calculation of Lily's investmentThe formula to calculate the amount in an account with quarterly compounding is A = P (1 + r/n)^(nt)Where, A is the amount after time t, P is the principal amount, r is the annual interest rate, n is the number of times the interest is compounded per year, and t is the time. Lily invested $2,800 in an account paying an interest rate of 5 7/8 % compounded quarterly.i.e. r = 5.875% = 0.05875, n = 4, P = $2,800Thus, A = P (1 + r/n)^(nt)A = $2,800 (1 + 0.05875/4)^(4 × 15)A = $2,800 (1.0146875)^60A = $2,800 × 1.96494A = $7,425.16Step 3: Calculation of the difference in the amount After 15 years, Lily has $7,425.16 and Lincoln has $6,292.44Thus, the difference in the amount would be $7,425.16 - $6,292.44 = $1,132.72Therefore, the amount of money that Lily would have in her account than Lincoln, to the nearest dollar, is $1,133.

Know more about investment Continuous compounding  here:

https://brainly.com/question/31444739

#SPJ11

Suppose f(x,y,z)=x2+y2+z2 and W is the solid cylinder with height 5 and base radius 3 that is centered about the z-axis with its base at z=−1 . Enter θ as theta.
(a) As an iterated integral

Answers

To find the volume of the solid cylinder W, we can use an iterated integral. Since W is centered about the z-axis and its base is at z=−1, we can express the volume of W as a triple integral in cylindrical coordinates.

First, we need to express the bounds of the integral. The radius of the base of W is 3, so the bounds for r will be from 0 to 3. The height of W is 5, so the bounds for z will be from -1 to 4. Finally, for θ, we want to integrate over the entire cylinder, so the bounds will be from 0 to 2π.

Therefore, the triple integral for the volume of W is:

∭W dV = ∫₀³ ∫₀²π ∫₋¹⁴ f(r cos θ, r sin θ, z) r dz dθ dr

Plugging in the function f(x,y,z)=x²+y²+z², we get:

∭W dV = ∫₀³ ∫₀²π ∫₋¹⁴ (r cos θ)² + (r sin θ)² + z² r dz dθ dr

Simplifying this expression, we get:

∭W dV = ∫₀³ ∫₀²π ∫₋¹⁴ r³ + z² r dz dθ dr

Evaluating this iterated integral will give us the volume of the solid cylinder W.

You can learn more about integral at: brainly.com/question/22008756

#SPJ11

find the taylor polynomial 2() for the function ()=63 at =0.

Answers

The second-degree Taylor polynomial for the function ()=63 at =0 is simply 63.

To find the Taylor polynomial 2() for the function ()=63 at =0, we need to use the formula for the nth-degree Taylor polynomial:
2() = f(0) + f'(0)() + (1/2!)f''(0)()^2 + (1/3!)f'''(0)()^3 + ... + (1/n!)f^(n)(0)()^n

Since we are only interested in the second-degree Taylor polynomial, we need to calculate f(0), f'(0), and f''(0):
f(0) = 63
f'(x) = 0 (the derivative of a constant function is always 0)
f''(x) = 0 (the second derivative of a constant function is always 0)

Substituting these values into the formula, we get:
2() = 63 + 0() + (1/2!)0()^2
2() = 63

Therefore, the second-degree Taylor polynomial for the function ()=63 at =0 is simply 63.

Know more about the Taylor polynomial here:

https://brainly.com/question/2533683

#SPJ11

Which of the following statements about decision analysis is false? a decision situation can be expressed as either a payoff table or a decision tree diagram there is a rollback technique used in decision tree analysis ::: opportunity loss is the difference between what the decision maker's profit for an act is and what the profit could have been had the decision been made Decisions can never be made without the benefit of knowledge gained from sampling

Answers

The statement "Decisions can never be made without the benefit of knowledge gained from sampling" is false.

Sampling refers to the process of selecting a subset of data from a larger population to make inferences about that population. While sampling can be useful in some decision-making contexts, it is not always necessary or appropriate.

In many decision-making situations, there may not be a well-defined population to sample from. For example, a business owner may need to decide whether to invest in a new product line based on market research and other available information, without necessarily having a representative sample of potential customers.

In other cases, the costs and logistics of sampling may make it impractical or impossible.

Additionally, some decision-making approaches, such as decision tree analysis, rely on modeling hypothetical scenarios and their potential outcomes without explicitly sampling from real-world data. While sampling can be a valuable tool in decision-making, it is not a requirement and decisions can still be made without it.

Learn more about Decision trees:

brainly.com/question/28906787

#SPJ11

By using the formula of cos 2A, establish the following:
[tex]cos \alpha = + - \sqrt{ \frac{1 + cos2 \alpha }{2} } [/tex]

Answers

Using cos 2A formula, cos α = ±√(1 + cos 2α)/2 can be derived.

Starting with the double angle formula for cosine, which is:

[tex]cos 2A = cos^2A - sin^2A[/tex]

We can rewrite this equation as:

[tex]cos^2A = cos 2A + sin^2A[/tex]

Adding 1/2 to both sides, we get:

[tex]cos^2A + 1/2 = (cos 2A + sin^2A) + 1/2[/tex]

Using the identity [tex]sin^2A + cos^2A[/tex] = 1, we can simplify the right-hand side to:

[tex]cos^2A + 1/2[/tex]= cos 2A+1/2

Now, we can take the square root of both sides to get:

[tex]cos A = ±√[(cos^2A + 1/2)] = ±√[(1 + cos 2A)/2][/tex]

This shows that cos α can be expressed in terms of cos 2α using the double angle formula for cosine. Specifically, cos α is equal to the square root of one plus cos 2α, divided by two, with a positive or negative sign depending on the quadrant in which α lies.

To learn more about cos 2A, refer:

https://brainly.com/question/28533481

#SPJ1

find a value of c> 1 so that the average value of f(x)=(9pi/x^2)cos(pi/x) on the interval [2, 20]

Answers

c = pi/2, and the value of c > 1 such that the average value of f(x) on the interval [2, 20] is equal to c is c = pi/2.

The average value of a function f(x) on the interval [a, b] is given by:

Avg = 1/(b-a) * ∫[a, b] f(x) dx

We want to find a value of c > 1 such that the average value of the function [tex]f(x) = (9pi/x^2)cos(pi/x)[/tex] on the interval [2, 20] is equal to c.

First, we find the integral of f(x) on the interval [2, 20]:

[tex]∫[2, 20] (9pi/x^2)cos(pi/x) dx[/tex]

We can use u-substitution with u = pi/x, which gives us:

-9pi * ∫[pi/20, pi/2] cos(u) du

Evaluating this integral gives us:

[tex]-9pi * sin(u) |_pi/20^pi/2 = 9pi[/tex]

Therefore, the average value of f(x) on the interval [2, 20] is:

[tex]Avg = 1/(20-2) * ∫[2, 20] (9pi/x^2)cos(pi/x) dx[/tex]

= 1/18 * 9pi

= pi/2

Now we set c = pi/2 and solve for x:

Avg = c

[tex]pi/2 = 1/(20-2) * ∫[2, 20] (9pi/x^2)cos(pi/x) dx[/tex]

pi/2 = 1/18 * 9pi

pi/2 = pi/2

Therefore, c = pi/2, and the value of c > 1 such that the average value of f(x) on the interval [2, 20] is equal to c is c = pi/2.

To know more about function refer to-

https://brainly.com/question/12431044

#SPJ11

P is a function that gives the cost, in dollars, of mailing a letter from the United States to Mexico in 2018 based on the weight of the letter in ounces,w

Answers

Given that P is a function that gives the cost, in dollars, of mailing a letter from the United States to Mexico in 2018 based on the weight of the letter in ounces, w.In order to write a function, we must find the rate at which the cost changes with respect to the weight of the letter in ounces.

Let C be the cost of mailing a letter from the United States to Mexico in 2018 based on the weight of the letter in ounces, w.Let's assume that the cost C is directly proportional to the weight of the letter in ounces, w.Let k be the constant of proportionality, then we have C = kwwhere k is a constant of proportionality.Now, if the cost of mailing a letter with weight 2 ounces is $1.50, we can find k as follows:1.50 = k(2)⇒ k = 1.5/2= 0.75 Hence, the cost C of mailing a letter from the United States to Mexico in 2018 based on the weight of the letter in ounces, w is given by:C = 0.75w dollars. Answer: C = 0.75w

To know more about weight,visit:

https://brainly.com/question/31659519

#SPJ11

Express the confidence interval
left parenthesis 0.008 comma 0.096 right parenthesis(0.008,0.096)
in the form of
ModifyingAbove p with caret minus Upper E less than p less than ModifyingAbove p with caret plus Upper Ep−E

Answers

Modifying Above p with caret minus Upper E less than p less than ModifyingAbove p with caret plus Upper E

where p is the point estimate, and Upper E is the margin of error.


To express the confidence interval (0.008, 0.096) in the form of ModifyingAbove p with caret minus Upper E less than p less than ModifyingAbove p with caret plus Upper E, we first need to find the point estimate (p) and the margin of error (Upper E).

The point estimate is the midpoint of the interval, which is:

p = (0.008 + 0.096) / 2 = 0.052

The margin of error is half the width of the interval, which is:

Upper E = (0.096 - 0.008) / 2 = 0.044

Therefore, the confidence interval can be expressed as:

ModifyingAbove 0.052 with caret minus 0.044 less than p less than ModifyingAbove 0.052 with caret plus 0.044

This means that we are 95% confident that the true population proportion (p) falls within the range of 0.008 to 0.096.

the confidence interval (0.008, 0.096) can be expressed in the form of Modifying Above p with caret minus Upper E less than p less than Modifying Above p with caret plus Upper E as Modifying Above 0.052 with caret minus 0.044 less than p less than Modifying Above 0.052 with caret plus 0.044. This means that we are 95% confident that the true population proportion falls within this range.

To learn more about interval visit:

https://brainly.com/question/30486507

#SPJ11

determine and from the given parameters of the population and sample size. u=83. =14, n=49

Answers

The population mean, denoted by u, is 83, and the standard deviation of the population, denoted by sigma, is 14. The sample size, denoted by n, is 49.
Hi! I'd be happy to help you with your question. Based on the given parameters of the population and sample size, we need to determine µ (mean) and σ (standard deviation).

From the information provided, we have the following parameters:

1. Population mean (µ) = 83
2. Population standard deviation (σ) = 14
3. Sample size (n) = 49

Using these parameters, we can determine the mean and standard deviation for the sample. Since the population mean is given, the sample mean will also be 83.

To find the standard error (SE), which is the standard deviation for the sample, use the formula:

SE = σ / √n

Plugging in the values, we get:

SE = 14 / √49
SE = 14 / 7
SE = 2

So, the sample mean (µ) is 83, and the sample standard deviation (SE) is 2.

To know more about mean visit:

https://brainly.com/question/1136789

#SPJ11

Let f and g be functions such that, f(0)=2, g(0)=3, f'(0)=-10, g'(0)=-3. Find h'(0) for the function h(x)=g(x)f(x). h'(0)=??

Answers

If f and g be functions such that, f(0)=2, g(0)=3, f'(0)=-10, g'(0)=-3, then :

h'(0) = -36.

To find h'(0), we can use the product rule for derivatives. The product rule states that if h(x) = f(x)g(x), then h'(x) = f'(x)g(x) + f(x)g'(x).

Applying this to our function h(x) = g(x)f(x), we get:

h'(x) = g'(x)f(x) + g(x)f'(x)

Now we can evaluate this expression at x = 0, since we are looking for h'(0). Plugging in the given values, we get:

h'(0) = g'(0)f(0) + g(0)f'(0)
      = (-3)(2) + (3)(-10)
      = -6 - 30
      = -36

Therefore, we can state that the value of h'(0) = -36.

To learn more about derivatives visit : https://brainly.com/question/28376218

#SPJ11

T/F the transition from period 2 straight pi to an arbitrary period p equals 2 l is only possible if f is a trigonometric function.

Answers

"The given statement is false."Any function that satisfies the condition of periodicity can have a transition from period 2 straight pi to an arbitrary period p equals 2 l. It does not have to be a trigonometric function.

"False". The transition from period 2 straight pi to an arbitrary period p equals 2 l can be achieved by any function that satisfies the condition f(x + p) = f(x) for all x. Such a function is said to be periodic with period p.

Trigonometric functions such as sine and cosine are examples of periodic functions with period 2π, but there are many other functions that can be periodic with different periods.

For instance, the function f(x) = x^2 is a periodic function with period 2, since f(x + 2) = (x + 2)^2 = x^2 + 4x + 4 = x^2 + 4(x + 1) = f(x) + 4. This means that the function repeats every 2 units. Similarly, the function f(x) = sin(πx) is a periodic function with period 2, since f(x + 2) = sin(π(x + 2)) = sin(πx + 2π) = sin(πx) = f(x).

For such more questions on Periodicity:

https://brainly.com/question/27389507

#SPJ11

True. The transition from period 2 straight pi to an arbitrary period p equals 2 l is only possible if f is a trigonometric function.

True, the transition from a period of 2π to an arbitrary period P = 2L is only possible if f is a trigonometric function.
1. Trigonometric functions, such as sine and cosine, have a standard period of 2π.
2. In order to transition from the standard period to an arbitrary period P, we need to adjust the function by a factor.
3. The arbitrary period P can be represented as P = 2L, where L is a constant value.
4. For a trigonometric function f(x) with the standard period 2π, we can create a new function g(x) with period P by using the following transformation: g(x) = f(kx), where k = (2π)/P.
5. As a result, the new function g(x) will have the desired arbitrary period P = 2L.

This is because trigonometric functions are periodic and can have arbitrary periods, whereas non-trigonometric functions may not exhibit periodicity at all or may have a specific period that cannot be easily modified.
Thus, the statement is true.

Learn more about trigonometric:

brainly.com/question/14746686

#SPJ11

use the tabulated values of f to evaluate the left and right riemann sums for n = 10 over the interval [0,5]

Answers

To evaluate the left and right Riemann sums for n = 10 over the interval [0,5], we need to use tabulated values of the function f. These Riemann sums are approximations of the definite integral of f over the given interval.

The Riemann sum is a method for approximating the definite integral of a function over an interval by dividing the interval into subintervals and evaluating the function at specific points within each subinterval. The left Riemann sum uses the left endpoint of each subinterval, while the right Riemann sum uses the right endpoint.

In this case, we are given that n = 10, which means we need to divide the interval [0,5] into 10 subintervals of equal width. The width of each subinterval can be found by taking the difference between the endpoints of the interval and dividing it by the number of subintervals (in this case, 10).

Once we have the width of each subinterval, we can determine the specific points within each subinterval where we will evaluate the function f. The left Riemann sum will use the left endpoint of each subinterval as the evaluation point, while the right Riemann sum will use the right endpoint.

By summing up the function values at these evaluation points and multiplying by the width of each subinterval, we can obtain the left and right Riemann sums for the given function f over the interval [0,5] with n = 10. These sums provide approximations of the definite integral of f over the interval and can be used to understand the behavior of the function within that range.

Learn more about integral here: https://brainly.com/question/31059545

#SPJ11

What would be the most logical first step for solving this quadratic equation?
x²+2x+13= -8
OA. Take the square root of both sides
B. Add 8 to both sides
OC. Divide both sides by x
D. Subtract 13 from both sides
SUBMIT

Answers

Answer:

B

Step-by-step explanation:

Adding 8 to both sides will allow you to set the quadratic equal to 0. From there factoring becomes easier.

a) let p(x) be any polynomial in x and n > 0 any positive integer. show that lim x−→0 x −n p(x)e−1/x2 = 0. hint: first do this for p(x)= 1; replacing x by 1/x may simplify l’hospital.

Answers

The limit of the expression x⁻ⁿ p(x) [tex]e^{-1/x^2}[/tex] as x approaches zero is zero.

Let p(x) be any polynomial in x, and n be a positive integer. We want to find the limit of the expression x⁻ⁿ p(x)  [tex]e^{-1/x^2}[/tex]  as x approaches zero. This expression involves a polynomial, an exponential function, and a power function.

To begin, let's consider the case where p(x) is the constant function 1. In this case, the expression simplifies to x⁻ⁿ  [tex]e^{-1/x^2}[/tex] . To evaluate the limit of this expression as x approaches zero, we can use L'Hopital's rule. Specifically, we can take the derivative of the numerator and denominator with respect to x. This gives us:

lim x→0 x⁻ⁿ  [tex]e^{-1/x^2}[/tex]  = lim x→0 (-n)x^(-n-1)  [tex]e^{-1/x^2}[/tex]  / (-2x⁻³  [tex]e^{-1/x^2}[/tex] )

We can simplify this expression by canceling out the common factor of e^(-1/x²) in both the numerator and denominator. This gives us:

lim x→0 x⁻ⁿ  [tex]e^{-1/x^2}[/tex]  = lim x→0 (-n/2)xⁿ⁻²

Since n is a positive integer, the exponent n-2 is also a positive integer. Therefore, as x approaches zero, the term xⁿ⁻² approaches zero faster than any power of x⁻¹, and the overall limit of the expression is zero.

Specifically, we have:

lim x→0 x⁻ⁿ p(x)  [tex]e^{-1/x^2}[/tex] = lim y→∞ yⁿ p(1/y) [tex]e^{-y^2}[/tex]

By setting z = 1/y, we can rewrite the expression as:

lim z→0+ zⁿ p(z)  [tex]e^{-1/x^2}[/tex]

Now we have reduced the problem to the special case we have already solved. Therefore, as z approaches zero, the limit of the expression is also zero.

To know more about polynomial here

https://brainly.com/question/11536910

#SPJ4

what is the upper sum for f(x)=17−x2 on [3,4] using four subintervals?

Answers

the upper sum for f(x) = 17 - [tex]x^{2}[/tex] on the interval [3, 4] using four subintervals is approximately 6.46875.

To calculate the upper sum, we divide the interval [3, 4] into four subintervals of equal width. The width of each subinterval is (4 - 3) / 4 = 1/4.

Next, we evaluate the function at the right endpoint of each subinterval and multiply it by the width of the subinterval. For this function, we need to find the maximum value within each subinterval. Since the function f(x) = 17 - [tex]x^{2}[/tex] is a downward-opening parabola, the maximum value within each subinterval occurs at the left endpoint.

Using four subintervals, the right endpoints are: 3 + (1/4), 3 + (2/4), 3 + (3/4), and 3 + (4/4), which are 3.25, 3.5, 3.75, and 4 respectively.

Evaluating the function at these right endpoints, we get: f(3.25) = 8.5625, f(3.5) = 10.75, f(3.75) = 13.5625, and f(4) = 13.

Finally, we calculate the upper sum by summing the products of each function value and the subinterval width: (1/4) × (8.5625 + 10.75 + 13.5625 + 13) = 6.46875.

Learn more about subinterval here:

https://brainly.com/question/27258724

#SPJ11

find a cubic function that has a local maximum value of 4 at 1 and a local minimum value of –1,184 at 7.

Answers

The cubic function that has a local maximum value of 4 at 1 and a local minimum value of –1,184 at 7 is:

[tex]f(x) = (-28/15)x^3 + (59/15)x^2 - 23x - 149/3[/tex]

We can start by writing the cubic function in the general form:

[tex]f(x) = ax^3 + bx^2 + cx + d[/tex]

To find the coefficients of the function, we can use the given information about the local maximum and minimum values.

First, we know that the function has a local maximum value of 4 at x = 1. This means that the derivative of the function is equal to zero at x = 1, and the second derivative is negative at that point. So, we have:

f'(1) = 0

f''(1) < 0

Taking the derivative of the function, we get:

[tex]f'(x) = 3ax^2 + 2bx + c[/tex]

Since f'(1) = 0, we have:

3a + 2b + c = 0 (Equation 1)

Taking the second derivative of the function, we get:

f''(x) = 6ax + 2b

Since f''(1) < 0, we have:

6a + 2b < 0 (Equation 2)

Next, we know that the function has a local minimum value of -1,184 at x = 7. This means that the derivative of the function is equal to zero at x = 7, and the second derivative is positive at that point. So, we have:

f'(7) = 0

f''(7) > 0

Using the same process as before, we can get two more equations:

21a + 14b + c = 0 (Equation 3)

42a + 2b > 0 (Equation 4)

Now we have four equations (Equations 1-4) with four unknowns (a, b, c, d), which we can solve simultaneously to get the values of the coefficients.

To solve the equations, we can eliminate c and d by subtracting Equation 3 from Equation 1 and Equation 4 from Equation 2. This gives us:

a = -28/15

b = 59/15

Substituting these values into Equation 1, we can solve for c:

c = -23

Finally, we can substitute all the values into the general form of the function to get:

[tex]f(x) = (-28/15)x^3 + (59/15)x^2 - 23x + d[/tex]

To find the value of d, we can use the fact that the function has a local maximum value of 4 at x = 1. Substituting x = 1 and y = 4 into the function, we get:

4 = (-28/15) + (59/15) - 23 + d

Solving for d, we get:

d = -149/3

To know more about cubic function refer here:

https://brainly.com/question/29337275

#SPJ11

18. Ten apples, four of which are rotten, are in a refrigerator. Three apples are randomly selected without replacement. Let the random variable x represent the number chosen that are rotten. Construct a table describing the probability distribution, then find the mean and standard deviation for the random variable x. (Hint: you can use Table A-1 to find the probabilities)

Answers

The standard deviation of x can be  0.725.

The table describing the probability distribution of x is as follows

x P(X=x)

0 10/120

1 48/120

2 42/120

3 20/120

To find the probabilities, we can use the hypergeometric distribution formula:

P(X=x) = (C(4,x) * C(6,3-x)) / C(10,3)

where C(n,r) represents the number of combinations of n things taken r at a time.

The mean of x can be found using the formula:

E(X) = Σ(x * P(X=x))

= 0*(10/120) + 1*(48/120) + 2*(42/120) + 3*(20/120)

= 1.4

Know more about standard deviation here:

https://brainly.com/question/23907081

#SPJ11

The length of life, in hours, of a drill bit in a mechanical operation has a Weibull distribution with a = 2 and B = 50. Find the probability that the bit will fail before 10 hours of usage. The probability is approximately: O 1 O 0 O 0.5 O 0.8

Answers

The probability that the bit will fail before 10 hours of usage is:

P(X < 10) = F(10) = 1 - e^(-(10/50)^2) ≈ 0.3935

The Weibull distribution is given by the probability density function:

f(x) = (a/B) * (x/B)^(a-1) * e^(-(x/B)^a)

where a and B are the shape and scale parameters, respectively.

In this case, a = 2 and B = 50. We want to find the probability that the bit will fail before 10 hours of usage, i.e., P(X < 10), where X is the random variable representing the length of life of the drill bit.

Using the cumulative distribution function (CDF) of the Weibull distribution, we have:

F(x) = 1 - e^(-(x/B)^a)

Substituting the values of a and B, we get:

F(x) = 1 - e^(-(x/50)^2)

So the answer is approximately 0.4.

Know more about probability here;

https://brainly.com/question/30034780

#SPJ11

!!HELPP PLEASE 30 POINTSSS!!

this for financial mathematics, thank you for your help!

Answers

2) a. The average daily balance for the billing period, which ends on June 11. May has 31 days is $547.56.

b. $0.71 is the finance charge calculated on June 11. The monthly periodic rate is 1.3%.

c.  $548.27 is the Smith's new credit card balance on June 12.

3) $83.50 money was saved by making the payment earlier in the billing cycle.

a. It does matter when you make your payment because the finance charge is based on the balance at the end of the billing period.

b.  It also matters when you make your purchases because the daily balance is calculated based on the charges and payments up to and including each day.

2)

a. To find the average daily balance, we need to first calculate the balance for each day of the billing period. The balance for each day is the sum of charges and payments up to and including that day. We can calculate the balances as follows:

May 12: $378.50

May 13: $378.50 + $129.79 = $508.29

May 14-31: $508.29

June 1: $508.29 + $135.85 = $644.14

June 2-7: $644.14

June 8: $644.14 + $37.63 = $681.77

June 9: $681.77 - $50.00 = $631.77

June 10-11: $631.77

Next, we add up the daily balances and divide by the number of days in the billing period:

Average daily balance = (31 x $508.29 + 6 x $644.14 + 2 x $681.77) / 39

                                      = $21,328.99 / 39

                                      = $547.56

b. To calculate the finance charge, we first need to calculate the daily periodic rate, which is the monthly periodic rate divided by the number of days in a month:

Daily periodic rate = 1.3% / 30

                              = 0.04333%

Next, we multiply the average daily balance by the daily periodic rate and by the number of days in the billing period:

Finance charge = $547.56 x 0.0004333 x 30

                          = $0.71

c. The Smith's new credit card balance on June 12 is the sum of the average daily balance and the finance charge:

New balance = $547.56 + $0.71

                       = $548.27

3) The payment was made on June 9, which is 3 days before the end of the billing period. If the payment had been made on June 11, the balance would have been $631.77 instead of $548.27. This means that the payment saved the Smiths $83.50 in finance charges.

a) It does matter when you make your payment because the finance charge is based on the balance at the end of the billing period. If you make a payment earlier in the billing cycle, your balance will be lower at the end of the period and you will pay less in finance charges.

b) It also matters when you make your purchases because the daily balance is calculated based on the charges and payments up to and including each day. If you make a large purchase early in the billing cycle, your average daily balance will be higher and you will pay more in finance charges.

Learn more about Billing cycle at

brainly.com/question/29348756

#SPJ1

PLS HELP
HURRY ITS DUE TODAY

The dot plots below show the ages of students belonging to two groups of music classes:


A dot plot shows two divisions labeled Group A and Group B. The horizontal axis is labeled as Age of Music Students in years. Group A shows 5 dots at 6, 5 dots at 8, 3 dots at 9, 7 dots at 11, and 5 dots at 13. Group B shows 2 dots at 6, 4 dots at 10, 4 dots at 13, 3 dots at 15, 5 dots at 16, 4 dots at 19, and 3 dots at 21.

Based on visual inspection, which group most likely has a lower mean age of music students? Explain your answer using two or three sentences. Make sure to use facts to support your answer. (10 points)

Answers

Answer:

The concentration of dots at younger ages in Group A suggests a lower overall average age compared to Group B.

Step-by-step explanation:

Based on visual inspection, Group A most likely has a lower mean age of music students compared to Group B. This conclusion is supported by the fact that the majority of dots in Group A are clustered around the younger ages of 6, 8, 9, 11, and 13, while Group B has dots more spread out across a wider range of ages, including higher ages such as 19 and 21. The concentration of dots at younger ages in Group A suggests a lower overall average age compared to Group B.

For more questions on overall average age

https://brainly.com/question/30433207

#SPJ11

Becoming a fine artist can happen overnight.


True


False

Answers

trueeeee but like very unlikely

Answer:

Step-by-step explanation:

True. But there is a very high chance of not happening

Has identified a species from the West Coast of the United States that may have been the ancestor of 28 distinct species on the Hawaiian Islands. What is this species?

Answers

The species from the West Coast of the United States that may have been the ancestor of 28 distinct species on the Hawaiian Islands is known as the Silversword.

The Silversword is a Hawaiian plant that has undergone an incredible degree of adaptive radiation, resulting in 28 distinct species, each with its unique appearance and ecological niche.

The Silversword is a great example of adaptive radiation, a process in which an ancestral species evolves into an array of distinct species to fill distinct niches in new habitats.

The Silversword is native to Hawaii and belongs to the sunflower family.

These plants have adapted to Hawaii's high-elevation volcanic slopes over the past 5 million years. Silverswords can live for decades and grow up to 6 feet in height.

To know more about species visit:-

https://brainly.com/question/25939248

#SPJ11

5.2 in
7 in
9 in
4.7 in

Answers

There is no question :(

A) A researcher believes that a particular study exhibits large sampling error. What does the researcher mean by sampling error? B) How can sampling error be diminished? C) Discuss why one of the following methods of sample selection might yield sampling error: convenience, snowball, or judgmental.

Answers

Sampling error refers to the discrepancy between sample characteristics and population characteristics. It can be diminished by increasing the sample size, using random sampling techniques, and improving response rates.

A) Sampling error refers to the difference between the characteristics of a sample and the characteristics of the population from which it was drawn.

In other words, sampling error refers to the degree to which the sample statistics deviate from the population parameters.

B) Sampling error can be diminished by increasing the sample size, using random sampling techniques to ensure that the sample is representative of the population, and minimizing sources of bias in the sampling process.

C) Convenience sampling, snowball sampling, and judgmental sampling are all methods of non-probability sampling, which means that they do not involve random selection of participants.

As a result, these methods are more likely to yield sampling error than probability sampling methods.

Convenience sampling involves selecting participants who are readily available, which may not be representative of the population of interest.

Snowball sampling involves using referrals from existing participants, which may create biases in the sample.

Judgmental sampling involves selecting participants based on the researcher's judgment of who is most relevant to the study, which may not be representative of the population of interest.

To know more about method of sample selection refer here :

https://brainly.com/question/15604044#

#SPJ11

An object moves on a trajectory given by r(t)-(10 cos 2t, 10 sin 2t) for 0 t ?. How far does it travel?

Answers

Thus, the object travels a distance of 10π units along the given trajectory.

To find out how far an object travels along a given trajectory, we need to calculate the arc length of the curve. The formula for arc length is given by:

L = ∫_a^b √[dx/dt]^2 + [dy/dt]^2 dt

where L is the arc length, a and b are the start and end points of the curve, and dx/dt and dy/dt are the derivatives of x and y with respect to time t.

In this case, we have the trajectory r(t) = (10 cos 2t, 10 sin 2t) for 0 ≤ t ≤ π/2. Therefore, we can calculate the derivatives of x and y as follows:

dx/dt = -20 sin 2t
dy/dt = 20 cos 2t

Substituting these values into the formula for arc length, we get:

L = ∫_0^(π/2) √[(-20 sin 2t)^2 + (20 cos 2t)^2] dt
 = ∫_0^(π/2) √400 dt
 = ∫_0^(π/2) 20 dt
 = 20t |_0^(π/2)
 = 10π

Therefore, the object travels a distance of 10π units along the given trajectory.

Know more about the trajectory

https://brainly.com/question/88554

#SPJ11

8. Max is remodeling his house and is trying to come up with dimensions for his
bedroom. The length of the room will be 5 feet longer than his bed, and the
width of his room will be 7 feet longer than his bed. The area of his bed and the
room together is given by the function:
A(x) = (x + 5) (x + 7)
Part A: Find the standard form of the function A(x) and the y-intercept. Interpret
the y-intercept in the context.
Standard Form: A(x)
y- intercept:
Interpret the y-intercept:
=

Answers

The y-intercept represents the area of the bed and room together when the length and width of the bed are both zero and the function is given by the relation A(x) = x² + 12x + 35

Given data ,

To find the standard form of the function A(x), we first expand the expression:

A(x) = (x + 5) (x + 7)

A(x) = x² + 7x + 5x + 35

A(x) = x² + 12x + 35

So the standard form of the function A(x) is:

A(x) = x² + 12x + 35

To find the y-intercept, we set x = 0 in the function:

A(0) = 0² + 12(0) + 35

A(0) = 35

So the y-intercept is 35. In the context of the problem, the y-intercept represents the area of the bed and room together when the length and width of the bed are both zero.

Hence , the function is solved

To learn more about function rule click :

https://brainly.com/question/3760195

#SPJ1

Which numbers round to 4.9 when rounded to the nearest tenth? Mark all that apply.
A 4.95
B 4.87
C 4.93
D 5.04
E 4.97

Answers

Answer:

B, C

Step-by-step explanation:

A would round up to 5

B would round up to 4.9

C would round down to 4.9

D would round down to 5

E would round up to 5

Out of all these only B and C round to 4.9

Answer:

B and C

Step-by-step explanation:

A 4.95  --- this would round to 5.00.

B 4.87 - - - this would round to 4.9

C 4.93 - - - this would round to 4.9

D 5.04 - - - - this would round to 5.0

E 4.97 - - - this would round to 5.0

A segment that connects two points on a circle is called a
A. circumference
B. chord
C. radius
D. diameter

Answers

A segment that connects two points on a circle is called a chord, which makes the option B correct.

What is a chord in circles

In the context of circles, a chord refers to a line segment that connects two points on the circumference of the circle. It can also be defined as the longest possible segment that can be drawn between two points on a circle. Every chord in a circle creates two arcs, one on each side of the chord.

Note that diameter is a special type of chord that passes through the center of the circle. It is the longest possible chord in a circle, and it divides the circle into two congruent semicircles.

Therefore, a segment that connects two points on a circle is called a chord.

Read more about chord here:https://brainly.com/question/17023621

#SPJ1

Other Questions
Can Someone Answer this question??The first three terms of a sequence are given. Round to the nearest thousandth (if necessary).460, 451,442Find the 37th term. What does the author want us to understand by using the personification Which four parts of this excerpt from Stephen Crane's "The Open Boat" describe the narrator's opinion of the sea as a hostile entity?A singular disadvantage of the sea lles in the fact that after successfully surmounting thing wave you discover that there is another behind it justas important and just as nervously anxious to do something effective in the way of swamping boats. In a ten-foot dinghy one can get an idea ofthe resources of the sea in the line of waves that is not probable to the average experience, which is never at sea in a dinghy. As each slaty wallof water approached, it shut all else from the view of the men in the boat, and it was not difficult to imagine that this particular wave was thefinal outburst of the ocean, the last effort of the grim water. Can I please get help with this? Tanaka Company manufactures two products. The budgeted per-unit contribution margin for each product follows: Super Supreme Sales price $90 $129 Variable cost per unit (69) (75) Contribution margin per unit $21 $54 Fanning expects to incur annual fixed costs of $132,870. The relative sales mix of the products is 70 percent for Super and 30 percent for Supreme.Required:a. Determine the total number of products (units of Super and Supreme combined) Tanaka must sell to break even. b. How many units each of Super and Supreme must Tanaka sell to break even? (Do not round intermediate calculations.) what is 696969 time 1 NOTE: Angles not necessarily drawn to scale. Ellas el pelo rizado.tienetenemostenentienen A model shows a city located between a warm ocean and next to coastal mountains. Which statement best describes average weather of this city?Choose the correct answer.The city will experience high levels of rainfall. The city will experience high levels of snowfall. The city will have long periods of sunny weather.The city will have long periods of very cold weather. Understanding the behavioral norms for each age and stage of development is important for interpreting behaviors and the correct application of guidance strategies. in a pack of 24 balloons, 3/4 are blue or green, how many of the balloons are blue or green? 7x 3 4 = -1 + 21 sum of 500 consecutive integers is 250 . what is the product same 500 numbers The midpoint of AB is M(-2,1). If the coordinates of A are(1, -2), what are the coordinates of B? Parallel structure bellringer So I've noticed a lot of people have been struggling on equations like these : 8 + ( 2 * 7 ) and I'll be explaining an easy way on how to solve it.So basically 2 * 7 = 14, now we just have to add 8 + 14 which equals 22.The parenthesis is the equation you have to solve to get your answer and then you just have to either add, subtract, multiply or divide to find your answer.I hope this helped! how do you express 90 inches in yards and inches. CHANGE THE SENTENCE INTO DIRECT SPEECH1. The mother said it was okay to fail sometimes2. Ezra promised that he would do his best next time. What is the measure of angle A? The breaking down or wearing away of rock and soil is known as... A. earthquake B. global shift C. weathering D. deposition